Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Development ; 150(3)2023 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-36734326

RESUMO

During embryonic development, the forebrain roof plate undergoes invagination, leading to separation of the cerebral hemispheres. Any defects in this process, in humans, lead to middle interhemispheric holoprosencephaly (MIH-HPE). In this study, we have identified a previously unreported downstream mediator of retinoic acid (RA) signaling, CNKSR2, which is expressed in the forebrain roof plate in the chick embryo. Knockdown of CNKSR2 affects invagination, cell proliferation and patterning of the roof plate, similar to the phenotypes observed upon inhibition of RA signaling. We further demonstrate that CNKSR2 functions by modulating the Ras/Raf/MEK signaling. This appears to be crucial for patterning of the forebrain roof plate and its subsequent invagination, leading to the formation of the cerebral hemispheres. Thus, a set of novel molecular players have been identified that regulate the morphogenesis of the avian forebrain.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Holoprosencefalia , Prosencéfalo , Tretinoína , Animais , Embrião de Galinha , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Holoprosencefalia/genética , Quinases de Proteína Quinase Ativadas por Mitógeno/genética , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Prosencéfalo/embriologia , Tretinoína/metabolismo
2.
Dev Biol ; 467(1-2): 95-107, 2020 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-32919944

RESUMO

The retinotectal system has been extensively studied for investigating the mechanism(s) for topographic map formation. The optic tectum, which is composed of multiple laminae, is the major retino recipient structure in the developing avian brain. Laminar development of the tectum results from cell proliferation, differentiation and migration, coordinated in strict temporal and spatial patterns. However, the molecular mechanisms that orchestrate these complex developmental events, have not been fully elucidated. In this study, we have identified the presence of differential retinoic acid (RA) signaling along the rostro-caudal and dorsoventral axis of the tectum. We show for the first time that loss of RA signaling in the anterior optic tectum, leads to an increase in cell proliferation and gross changes in the morphology manifested as defects in lamination. Detailed analysis points to delayed migration of cells as the plausible cause for the defects in lamina formation. Thus, we conclude that in the optic tectum, RA signaling is involved in maintaining cell proliferation and in regulating the formation of the tectal laminae.


Assuntos
Diferenciação Celular , Movimento Celular , Proliferação de Células , Colículos Superiores/embriologia , Tretinoína/metabolismo , Animais , Embrião de Galinha , Galinhas
3.
Int J Dev Biol ; 64(1-2-3): 247-257, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32659013

RESUMO

The forebrain roof plate undergoes dramatic morphogenetic changes to invaginate, and this leads to formation of the two cerebral hemispheres. While many genetic factors are known to regulate this process, the mechanism of forebrain roof plate invagination remains unknown. In a recent study we have identified retinoic acid as a signal from the dorsal mesenchyme that regulates the invagination of the roof plate. This has brought into focus the importance of the interaction between the dorsal mesenchyme and the underlying roof plate. One of the structures derived from the dorso-medial forebrain after roof plate invagination is the hippocampus. While the functions of the hippocampus are conserved between birds and mammals, there are distinct structural differences. We have studied hippocampus development in the chick embryo and uncovered several similarities and differences between the process in mammals and birds. This study has also lent support to one of the prevalent models of structural homology between the avian and mammalian hippocampus. In this review, we have underscored the importance of the chick embryo as a model for studying forebrain roof plate morphogenesis and hippocampus development.


Assuntos
Indução Embrionária , Hipocampo/embriologia , Morfogênese , Prosencéfalo/embriologia , Animais , Embrião de Galinha
5.
Development ; 146(20)2019 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-31578189

RESUMO

The functions of the hippocampus are conserved between birds and mammals; however, it is not known whether similar mechanisms are responsible for its development in these two classes. In mammals, hippocampus development is known to be regulated by the hem organizer. Here, we have identified that, in birds, Wnt7b secreted from the hem is sufficient for inducing the expression of hippocampal markers. Furthermore, we have demonstrated that a microRNA, miR-19b, which is selectively excluded from the hem region, is necessary and sufficient for restricting the expression of Wnt7b to the hem. This study suggests that the role of the Wnt signal emanating from the hem is conserved between birds and mammals, and that a microRNA-based mechanism is crucial for determining the position of the hippocampus.


Assuntos
Córtex Cerebral/metabolismo , Hipocampo/metabolismo , MicroRNAs/metabolismo , Proteínas Wnt/metabolismo , Animais , Córtex Cerebral/citologia , Embrião de Galinha , Células HEK293 , Hipocampo/citologia , Humanos , Hibridização In Situ , MicroRNAs/genética , Neurogênese/genética , Neurogênese/fisiologia , Prosencéfalo/citologia , Prosencéfalo/metabolismo , Proteínas Wnt/genética
6.
J Mol Biol ; 431(4): 777-793, 2019 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-30639188

RESUMO

Two-component signal transduction (TCS) cascades involve stimulus-dependent activation and phosphorylation of a sensor kinase (SK), which then transfers the phosphoryl moiety to the response regulator (RR) protein. The fidelity of this phosphotransfer reaction from the SK to the RR provides specificity to TCS signaling. In the present study, we show that for TcrX, a transcriptionally autoregulated RR of Mycobacterium tuberculosis, acetylation enhances its net phosphorylation from cognate SK TcrY and lowers it from a non-cognate SK MtrB. Similar acetylation mediated increase in phosphorylation was also observed for another RR MtrA from cognate SK MtrB. Thus, we establish a novel TCS signaling design wherein acetylation of RRs results in enhanced cognate phosphorylation and suppresses non-cognate phosphorylation. Using wild-type or acetylation-deficient TcrX proteins in M. tuberculosis H37Ra, we demonstrate that non-acetylated TcrX acts as a "phosphate sink" for MtrB and suppressing signal propagation from MtrB to MtrA in vivo, linking metabolism to TCS signaling. Overall, we report that acetylation of RRs shields TCSs from crosstalk, modulates the phosphatase activities and alters the DNA-binding activities of RRs, all of which are non-intuitive behavior of TCS systems.


Assuntos
Proteínas de Bactérias/genética , Mycobacterium tuberculosis/genética , Fosforilação/genética , Fosfotransferases/genética , Transdução de Sinais/genética , Acetilação , Homeostase/genética , Transcrição Gênica/genética
7.
J Comp Neurol ; 525(3): 459-477, 2017 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-27410778

RESUMO

Information from the retina is carried along the visual pathway with accuracy and spatial conservation as a result of topographically mapped axonal connections. The optic tectum in the midbrain is the primary region to which retinal ganglion cells project their axons in the chick. The two primary axes of the retina project independently onto the tectum using different sets of guidance cues to give rise to the retinotectal map. Specificity of the map is determined by attractive or repulsive interactions between molecular tags that are distributed in gradients in the retina and the tectum. Despite several studies, knowledge of the retinotectal guidance molecules is far from being complete. We screened for all molecules that are expressed differentially along the anterior-posterior and medial-lateral axes of the chick tectum using microarray based transcriptional profiling and identified several novel candidate retinotectal guidance molecules. Two such genes, encoding Wnt5a and Raldh2, the synthesizing enzymes for retinoic acid, were further analyzed for their function as putative regulators of retinotectal map formation. Wnt5a and retinoic acid were found to exhibit differential effects on the growth of axons from retinal explants derived from different quadrants of the retina. This screen also yielded a large number of genes expressed in a lamina-specific manner in the tectum, which may have other roles in tectal development. J. Comp. Neurol. 525:459-477, 2017. © 2016 Wiley Periodicals, Inc.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Retina/embriologia , Retina/metabolismo , Colículos Superiores/embriologia , Colículos Superiores/metabolismo , Transcriptoma , Animais , Proteínas Aviárias/metabolismo , Embrião de Galinha , Perfilação da Expressão Gênica , Hibridização In Situ , Análise em Microsséries , Crescimento Neuronal/fisiologia , Reação em Cadeia da Polimerase em Tempo Real , Retina/citologia , Colículos Superiores/citologia , Técnicas de Cultura de Tecidos , Vias Visuais/citologia , Vias Visuais/embriologia , Vias Visuais/metabolismo
8.
BMC Evol Biol ; 13: 212, 2013 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-24073883

RESUMO

BACKGROUND: Interlocus conflict predicts (a) evolution of traits, beneficial to males but detrimental to females and (b) evolution of aging and life-span under the influence of the cost of bearing these traits. However, there are very few empirical investigations shedding light on these predictions. Those that do address these issues, mostly reported response of male reproductive traits or the lack of it and do not address the life-history consequence of such evolution. Here, we test both the above mentioned predictions using experimental evolution on replicate populations of Drosophila melanogaster. We present responses observed after >45 generations of altered levels of interlocus conflict (generated by varying the operational sex ratio). RESULTS: Males from the male biased (high conflict, M-regime) regime evolved higher spontaneous locomotor activity and courtship frequency. Females exposed to these males were found to have higher mortality rate. Males from the female biased regime (low conflict, F-regime) did not evolve altered courtship frequency and activity. However, progeny production of females continuously exposed to F-males was significantly higher than the progeny production of females exposed to M-males indicating that the F-males are relatively benign towards their mates. We found that males from male biased regime lived shorter compared to males from the female biased regime. CONCLUSION: F-males (evolving under lower levels of sexual conflict) evolved decreased mate harming ability indicating the cost of maintenance of the suit of traits that cause mate-harm. The M-males (evolving under higher levels sexual conflict) caused higher female mortality indicating that they had evolved increased mate harming ability, possibly as a by product of increased reproduction related activity. There was a correlated evolution of life-history of the M and F-males. M-regime males lived shorter compared to the males from F-regime, possibly due to the cost of investing more in reproductive traits. In combination, these results suggest that male reproductive traits and life-history traits can evolve in response to the altered levels of interlocus sexual conflict.


Assuntos
Drosophila melanogaster/fisiologia , Animais , Evolução Biológica , Corte , Feminino , Longevidade , Masculino , Fenótipo , Reprodução , Razão de Masculinidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...