Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Vaccines (Basel) ; 8(3)2020 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-32679905

RESUMO

Due to constant antigenic drift and shift, current influenza-A vaccines need to be redesigned and administered annually. A universal flu vaccine (UFV) that provides long-lasting protection against both seasonal and emerging pandemic influenza strains is thus urgently needed. The hemagglutinin (HA) stem antigen is a promising target for such a vaccine as it contains neutralizing epitopes, known to induce cross-protective IgG responses against a wide variety of influenza subtypes. In this study, we describe the development of a UFV candidate consisting of a HAstem trimer displayed on the surface of rigid capsid-like particles (CLP). Compared to soluble unconjugated HAstem trimer, the CLP-HAstem particles induced a more potent, long-lasting immune response and were able to protect mice against both homologous and heterologous H1N1 influenza challenge, even after a single dose.

2.
Sci Rep ; 6: 38666, 2016 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-27929135

RESUMO

Intracellular pathogens represent a serious threat during early life. Importantly, even though the immune system of newborns may be characterized as developmentally immature, with a propensity to develop Th2 immunity, significant CD8+ T-cell responses may still be elicited in the context of optimal priming. Replication deficient adenoviral vectors have been demonstrated to induce potent CD8+ T-cell response in mice, primates and humans. The aim of the present study was therefore to assess whether replication-deficient adenovectors could overcome the risk of overwhelming antigen stimulation during the first period of life and provide a pertinent alternative in infant vaccinology. To address this, infant mice were vaccinated with three different adenoviral vectors and the CD8+ T-cell response after early life vaccination was explored. We assessed the frequency, polyfunctionality and in vivo cytotoxicity of the elicited memory CD8+ T cells, as well as the potential of these cells to respond to secondary infections and confer protection. We further tested the impact of maternal immunity against our replication-deficient adenoviral vector during early life vaccination. Overall, our results indicate that memory CD8+ T cells induced by adenoviral vectors in infant mice are of good quality and match those elicited in the adult host.


Assuntos
Adenoviridae/imunologia , Linfócitos T CD8-Positivos/imunologia , Vetores Genéticos/imunologia , Memória Imunológica , Vacinação , Vacinas/imunologia , Infecções por Adenoviridae/imunologia , Infecções por Adenoviridae/prevenção & controle , Fatores Etários , Animais , Biomarcadores , Linfócitos T CD8-Positivos/metabolismo , Feminino , Vetores Genéticos/administração & dosagem , Imunidade , Imunofenotipagem , Ativação Linfocitária , Camundongos , Fenótipo , Vacinação/métodos , Vacinas/administração & dosagem , Vacinas/genética
3.
Sci Rep ; 6: 35033, 2016 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-27713532

RESUMO

Recently, we showed that combined intranasal and subcutaneous immunization with a non-replicating adenoviral vector expressing NP of influenza A, strain PR8, induced long-standing protection against a range of influenza A viruses. However, H-2b mice challenged with an influenza A strain mutated in the dominant NP366 epitope were not efficiently protected. To address this problem, we envision the use of a cocktail of adenovectors targeting different internal proteins of influenza A virus. Consequently, we investigated the possibility of using PB1 as a target for an adenovector-based vaccine against influenza A. Our results showed that PB1 is not as immunogenic as the NP protein. However, by tethering PB1 to the murine invariant chain we were able to circumvent this problem and raise quite high numbers of PB1-specific CD8+ T cells in the circulation. Nevertheless, mice immunized against PB1 were not as efficiently protected against influenza A challenge as similarly NP-vaccinated animals. The reason for this is not a difference in the quality of the primed cells, nor in functional avidity. However, under similar conditions of immunization fewer PB1-specific cells were recruited to the airways, and surface expression of the dominant PB1 peptide, PB1703, was less stable than in the case of NP366.


Assuntos
Antígenos de Diferenciação de Linfócitos B/imunologia , Linfócitos T CD8-Positivos/metabolismo , Antígenos de Histocompatibilidade Classe II/imunologia , Vírus da Influenza A/imunologia , Vacinas contra Influenza/administração & dosagem , Proteínas Virais/metabolismo , Animais , Antígenos de Diferenciação de Linfócitos B/genética , Dependovirus/genética , Dependovirus/imunologia , Feminino , Antígenos de Histocompatibilidade Classe II/genética , Humanos , Vírus da Influenza A/genética , Vacinas contra Influenza/genética , Vacinas contra Influenza/imunologia , Camundongos , Mutação , Proteínas do Nucleocapsídeo , Proteínas de Ligação a RNA/genética , Proteínas do Core Viral/genética
4.
Sci Rep ; 6: 20137, 2016 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-26831578

RESUMO

The threat from unpredictable influenza virus pandemics necessitates the development of a new type of influenza vaccine. Since the internal proteins are highly conserved, induction of T cells targeting these antigens may provide the solution. Indeed, adenoviral (Ad) vectors expressing flu nucleoprotein have previously been found to induce short-term protection in mice. In this study we confirm that systemic (subcutaneous (s.c.) immunization rapidly induced heterosubtypic protection predominantly mediated by CD8 T cells, but within three months clinical protection completely disappeared. Local (intranasal (i.n.)) immunization elicited delayed, but more lasting protection despite relatively inefficient immunization. However, by far, the most robust protection was induced by simultaneous, combined (i.n. + s.c.) vaccination, and, notably, in this case clinical protection lasted at least 8 months without showing any evidence of fading. Interestingly, the superior ability of the latter group to resist reinfection correlated with a higher number of antigen-specific CD8 T cells in the spleen. Thus, detailed analysis of the underlying CD8 T cell responses highlights the importance of T cells already positioned in the lungs prior to challenge, but at the same time underscores an important back-up role for circulating antigen-specific cells with the capacity to expand and infiltrate the infected lungs.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Imunidade , Imunização , Vírus da Influenza A/imunologia , Infecções por Orthomyxoviridae/imunologia , Infecções por Orthomyxoviridae/virologia , Adenoviridae/metabolismo , Animais , Antígenos Virais/imunologia , Vias de Administração de Medicamentos , Feminino , Memória Imunológica , Vacinas contra Influenza/imunologia , Camundongos Endogâmicos C57BL , Infecções por Orthomyxoviridae/prevenção & controle , Fenótipo , Especificidade da Espécie , Fatores de Tempo , Vacinação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...