Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Molecules ; 28(20)2023 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-37894632

RESUMO

In this research, we focused on the production of amylose-lipid nanocomposite material (ALN) through a green synthesis technique utilizing high-speed homogenization. Our aim was to investigate this novel material's distinctive physicochemical features and its potential applications as a low-glycemic gelling and functional food ingredient. The study begins with the formulation of the amylose-lipid nanomaterial from starch and fatty acid complexes, including stearic, palmitic, and lauric acids. Structural analysis reveals the presence of ester carbonyl functionalities, solid matrix structures, partial crystallinities, and remarkable thermal stability within the ALN. Notably, the ALN exhibits a significantly low glycemic index (GI, 40%) and elevated resistance starch (RS) values. The research extends to the formulation of ALN into nanocomposite hydrogels, enabling the evaluation of its anthocyanin absorption capacity. This analysis provides valuable insights into the rheological properties and viscoelastic behavior of the resulting hydrogels. Furthermore, the study investigates anthocyanin encapsulation and retention by ALN-based hydrogels, with a particular focus on the influence of pH and physical cross-link networks on the uptake capacity presenting stearic-acid (SA) hydrogel with the best absorption capacity. In conclusion, the green-synthesized (ALN) shows remarkable functional and structural properties. The produced ALN-based hydrogels are promising materials for a variety of applications, such as medicine administration, food packaging, and other industrial purposes.


Assuntos
Amilose , Nanocompostos , Amilose/química , Hidrogéis/química , Antocianinas , Amido/química , Nanocompostos/química , Nanogéis
2.
Nanomaterials (Basel) ; 11(8)2021 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-34443899

RESUMO

Intensive conventional agriculture and climate change have induced severe ecological damages and threatened global food security, claiming a reorientation of agricultural management and public policies towards a more sustainable development model. In this context, nanomaterials promise to support this transition by promoting mitigation, enhancing productivity, and reducing contamination. This review gathers recent research innovations on smart nanoformulations and delivery systems improving crop protection and plant nutrition, nanoremediation strategies for contaminated soils, nanosensors for plant health and food quality and safety monitoring, and nanomaterials as smart food-packaging. It also highlights the impact of engineered nanomaterials on soil microbial communities, and potential environmental risks, along with future research directions. Although large-scale production and in-field testing of nano-agrochemicals are still ongoing, the collected information indicates improvements in uptake, use efficiency, targeted delivery of the active ingredients, and reduction of leaching and pollution. Nanoremediation seems to have a low negative impact on microbial communities while promoting biodiversity. Nanosensors enable high-resolution crop monitoring and sustainable management of the resources, while nano-packaging confers catalytic, antimicrobial, and barrier properties, preserving food safety and preventing food waste. Though, the application of nanomaterials to the agri-food sector requires a specific risk assessment supporting proper regulations and public acceptance.

3.
Sci Total Environ ; 703: 135562, 2020 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-31767303

RESUMO

Plant-soil systems have complex regulatory mechanisms for xenobiotics uptake by plant, and these chemicals in soil pore water (SPW) are regarded as the bioavailable fraction. To date, little is known about the role of SPW in regard to the bioavailability of antibiotics for plant. In this study, in situ soil moisture sampler (SMS) was adopted to collect SPW from four paddy soils without disrupting the rhizosphere zone to evaluate antibiotic uptake in rice. The results show that SMS is applicable for antibiotics that have small molecular sizes and Log Kow values, e.g., sulfadiazine (SDZ), sulfamethoxazole (SMZ), trimethoprim (TRM), and florfenicol (FLR). However, SMS performance was not feasible for large size and medium hydrophobic clarithromycin (CLR). Antibiotics in SPW demonstrated differences among chemicals and soils. Relatively higher levels of SDZ, SMZ, and FLR were observed in SPW than TRM, and neutral Panjin soil had the highest levels of antibiotics in SPW among four soils. The levels of antibiotics in SPW were negatively correlated with their soil partition parameter, Kd. Rapid decreases of SMZ, FLR, and SDZ in the SPW were consistent with their low residues in the final soils. All antibiotics were detectable in rice roots, followed by low detection levels in a few shoot samples, while no antibiotics were detectable in the grains of four soils. Relatively higher levels of SDZ, SMZ and FLR were observed in the roots of Panjin soil, consistent with their levels in SPW and Kd values. Furthermore, CLR and TRM were observed to have higher levels in roots, which was regarded as a consequence of their relatively longer persistence. Our study indicates that SMS is an applicable technique for in situ sampling of SPW, and level of antibiotics in SPW can work as a useful indicator to explore their bioavailability to plants.


Assuntos
Antibacterianos/análise , Monitoramento Ambiental , Poluentes do Solo/análise , Rizosfera , Solo/química , Sulfametoxazol , Trimetoprima , Água
4.
Environ Pollut ; 247: 1134-1142, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30823342

RESUMO

Antibiotics are introduced into agricultural fields by the application of manure or biosolids, or via irrigation using reclaimed wastewater. Antibiotics can enter the terrestrial food chains through plant uptake, which forms an alternative pathway for human exposure to antibiotics. However, previous studies mainly focused on detecting residues of the parent antibiotics, while ignoring the identification of antibiotics transformation products in plants. Here, we evaluated the uptake and metabolism of clarithromycin (CLA) and sulfadiazine (SDZ) in lettuce under controlled hydroponic conditions. The antibiotics and their metabolites were identified by ultra-performance liquid chromatography/quadrupole time-of-flight mass spectrometry (UPLC-QToF-MS/MS) and ultra-performance liquid chromatograph Micromass triple quadrupole mass spectrometry (UPLC-QqQ-MS/MS). The structure of CLA, SDZ and N-acetylated SDZ were confirmed with synthesized standards, verifying the reliability of the identification method. Eight metabolites of CLA and two metabolites of SDZ were detected in both the leaves and roots of lettuce. The metabolites of CLA included phases I and II transformation products, while only phase II metabolites of SDZ were observed in lettuce. The proportion of CLA metabolites was estimated to be greater than 70%, indicating that most of the CLA was metabolized in plant tissues. The proportion of SDZ metabolites was lower than 12% in the leaves and 10% in the roots. Some metabolites might have the ability to increase or acquire antibacterial activity. Therefore, in addition to the parent compounds, metabolites of antibiotics in edible vegetables are also worthy of study for risk assessment and to determine the consequences of long-term exposure.


Assuntos
Antibacterianos/metabolismo , Claritromicina/metabolismo , Lactuca/metabolismo , Folhas de Planta/metabolismo , Raízes de Plantas/metabolismo , Sulfadiazina/metabolismo , Verduras/metabolismo , Humanos
5.
Water Res ; 151: 280-287, 2019 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-30616040

RESUMO

Dissolved organic matter (DOM) plays an important role in degradation of organic pollutants by photochemically-produced reactive intermediates (RIs), such as excited triplet-states of DOM (3DOM*), singlet oxygen (1O2) and hydroxyl radical (·OH). However, it is not clear whether DOM extracted from coastal seawaters (CS-DOM) and DOM derived from freshwaters (FW-DOM) exhibit similar effects on photodegradation of organic micropollutants. Herein, 2,4-dihydroxybenzophenone (BP-1) was adopted as a model compound to probe the effects of different DOM on photodegradation kinetics of organic micropollutants. Results show that the CS-DOM promotes the photodegradation of BP-1 mainly via the pathway involving 3DOM*; while 3DOM*, 1O2 and ·OH are responsible for BP-1 photodegradation in the presence of the FW-DOM. Compared with the FW-DOM, the CS-DOM undergoes more photobleaching, and contains less aromatic C=C and C=O functional groups. Although 3DOM* formation quantum yields for the CS-DOM are relatively higher than those for the FW-DOM, the CS-DOM has lower rates of light absorption, leading to lower steady-state RI concentrations for the CS-DOM. BP-1 photodegradation in the presence of the CS-DOM is faster than in the presence of the FW-DOM, due to higher second-order reaction rate constants between BP-1 and CS-3DOM* and fewer antioxidants contained in the CS-DOM.


Assuntos
Água Doce , Poluentes Químicos da Água , Benzofenonas , Fotólise , Água do Mar
6.
Ecotoxicol Environ Saf ; 167: 44-53, 2019 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-30292975

RESUMO

Soil bacterial communities have complex regulatory networks, which are mainly associated with soil fertility and ecological functions, and are likely to be disturbed due to antibiotics applications. The impact of antibiotics, particularly in mixtures form, on bacterial communities in different paddy soils is poorly understood. Using pyrosequencing techniques of 16 S rRNA genes, this study investigated the synergistic effects of veterinary antibiotics (sulfadiazine, sulfamethoxazole, trimethoprim, florfenicol, and clarithromycin) on bacterial communities in a soil-bacteria-plant system. Rice was grown under controlled greenhouse conditions where unplanted and planted treatments were doped with 200 µg kg-1 of combined antibiotics over a period of 3 months. Bacterial richness remained unaltered, while a significant decline was observed in bacterial diversity due to antibiotics in the four paddy soils. Bacteroidetes and Acidobacteria were increased, while Actinobacteria and Firmicutes decreased under antibiotics exposure. Despite antibiotics perturbation, compositional variations were mainly attributed to the different paddy soils which harbor distinct bacterial communities. Haliangium and Gaiella were among the sensitive genera that were negatively correlated to antibiotics perturbation. Additionally, electrical conductivity, total organic carbon, and total nitrogen of soil solution were the key physiochemical indices which significantly influenced the structure of bacterial communities in the paddy soils. These findings expanded our knowledge of effects from synergistic antibiotics application and variations in bacterial communities among different paddy soils.


Assuntos
Antibacterianos/análise , Microbiologia do Solo , Drogas Veterinárias/análise , Acidobacteria/efeitos dos fármacos , Acidobacteria/isolamento & purificação , Actinobacteria/efeitos dos fármacos , Actinobacteria/isolamento & purificação , Bacteroidetes/efeitos dos fármacos , Bacteroidetes/isolamento & purificação , Biodiversidade , Carbono/análise , Firmicutes/efeitos dos fármacos , Firmicutes/isolamento & purificação , Nitrogênio/análise , Oryza/microbiologia , RNA Ribossômico 16S/genética , Solo/química
7.
Environ Health ; 6: 20, 2007 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-17650313

RESUMO

According to WHO, Pharmacovigilance activities are done to monitor detection, assessment, understanding and prevention of any obnoxious adverse reactions to drugs at therapeutic concentration on animal and human beings. However, there is also a growing focus among scientists and environmentalists about the impact of drugs on environment and surroundings. The existing term 'Ecopharmacology' is too broad and not even defined in a clear manner. The term 'Pharmacoenvironmentology' seeks to deal with the environmental impact of drugs given to humans and animals at therapeutic doses.


Assuntos
Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Ecossistema , Farmacoepidemiologia , Sistemas de Notificação de Reações Adversas a Medicamentos , Animais , Medicina Clínica , Indústria Farmacêutica , Europa (Continente) , Humanos , Vigilância de Produtos Comercializados , Medição de Risco , Estados Unidos , Medicina Veterinária , Gerenciamento de Resíduos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...