Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Phytoremediation ; 25(4): 393-402, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-35786072

RESUMO

In this study, the biomass of rubber seed pericarp was first treated with sulfuric acid and then its activated carbon was formed by the pyrolysis process. As produced acid-treated activated carbon of chosen biomass was then used for the adsorption of crystal violet (CV) and methylene green (MG) from the colored aqueous solution. The adsorbent was exposed to several characterization methods to know its structural and morphological behaviors before and after CV and MG adsorption. The adsorbent was found to be mesoporous having a surface area of 59.517 m2/g. The effect of pH, time, and concentration was assessed while various isotherm and kinetics models were employed to know the adsorption insight. The optimum conditions were at pH 8, within 30 min, 50 mg/L concentration, and 0.06 gm dose. The adsorption data (the maximum adsorption capacity for CV and MG were found to be 302.7 and 567.6 mg/g, respectively) was validated by fitting in a response surface statistical methodology and the positive interactions between the studied factors were found. The adsorption was mainly belonging to the electrostatic attraction of the dye molecules. The study proves that the used adsorbent is economical and an excellent source of treating wastewater.


The novelty of this research work comes from the conversion of the abundant biomass waste namely rubber seed pericarp into sulfonated-rich carbon material by pyrolysis process to be an efficient adsorbent for two structurally different cationic dyes. Furthermore, statistical optimization by using response surface methodology was applied to optimize the adsorption key parameters.


Assuntos
Corantes , Poluentes Químicos da Água , Corantes/química , Violeta Genciana/química , Adsorção , Pirólise , Biomassa , Carvão Vegetal/química , Biodegradação Ambiental , Sementes , Cinética , Poluentes Químicos da Água/química , Concentração de Íons de Hidrogênio
2.
Sci Rep ; 12(1): 13144, 2022 07 30.
Artigo em Inglês | MEDLINE | ID: mdl-35907938

RESUMO

Polyamide-12/Portland cement nanocomposite was prepared by using the exfoliated adsorption method. The fabricated nanocomposite was applied first time to remove Congo red (CR), brilliant green (BG), methylene blue (MB), and methyl red (MR) from the synthetic wastewater. The polymer nanocomposite was characterized by Fourier transform infrared spectroscopy, scanning electron microscopy, energy-dispersive X-ray spectroscopy, elemental mapping, Brunauer-Emmett-Teller surface area analysis, and X-ray diffraction. The adsorption was rapid and all the studied dyes were absorbed on the surface of the polymer nanocomposite in 90 min. The point of zero charge was found at pH 5 and the factors such as pH, time, and temperature were found to affect the adsorption efficiency. Freundlich isotherm and pseudo-second-order models well-fitted the adsorption isotherm and kinetics data, respectively. The calculated maximum adsorption capacity was 161.63, 148.54, 200.40, and 146.41 mg/g for CR, BG, MB, and MR, respectively. The mode of the adsorption process was endothermic, spontaneous, and physical involving electrostatic attraction. On an industrial scale, the high percentage of desorption and slow decrease in the percentage of adsorption after every five regeneration cycles confirm the potential, practicality, and durability of the nanocomposite as a promising and advanced adsorbent for decolorization of colored wastewater.


Assuntos
Nanocompostos , Poluentes Químicos da Água , Adsorção , Corantes , Vermelho Congo , Cinética , Azul de Metileno/química , Nanocompostos/química , Nylons , Regeneração , Espectroscopia de Infravermelho com Transformada de Fourier , Águas Residuárias/química
3.
Environ Sci Pollut Res Int ; 28(22): 28014-28023, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33527239

RESUMO

A facile, feasible, and green synthesis via an electrochemical exfoliation process was applied to synthesize nitrogen-doped MgO/graphene nanocomposite (N-MgO/G). The N-MgO/G nanocomposite was characterized by several analytical techniques including X-ray photoelectron spectroscopy, X-ray powder diffraction, transmission electron microscopy, field emission scanning electron microscopy, energy-dispersive X-ray spectroscopy, selected area electron diffraction, and elemental mapping analysis. N-MgO/G nanocomposite was then applied to adsorb lead metal ions (Pb2+) from aqueous solutions. The N-MgO/G nanocomposite demonstrated a remarkably high Langmuir maximum adsorption capacity (294.12 mg/g) for Pb2+ ions under the optimum experimental conditions at a pH of 5.13, time of 35 min, dose of 0.025 g, the concentration of 400 mg/L, and a temperature of 36 °C. Adsorption kinetics results fitted with a pseudo-second-order model and a thermodynamic study showed that Pb2+ adsorption is an endothermic process. The practical application of N-MgO/G was also investigated to test its applicability in real water samples collected from different sources such as deionized water, tap water, wastewater, and river water.


Assuntos
Grafite , Nanocompostos , Poluentes Químicos da Água , Adsorção , Cinética , Óxido de Magnésio , Nitrogênio , Espectroscopia de Infravermelho com Transformada de Fourier , Poluentes Químicos da Água/análise
4.
Sci Rep ; 10(1): 7983, 2020 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-32409753

RESUMO

The low cost, eco-friendly and potential biomass, i.e. walnut (Juglans regia) shell powder was deployed for the removal of toxic methylene blue dye from contaminated water solution. The important characterization of the waste material was conducted by using several techniques, i.e. Scanning electron microscope, Fourier-transform infrared spectroscopy, Energy-dispersive X-ray spectroscopy, X-ray powder diffraction, Brunauer-Emmett-Teller surface area analysis, and Thermogravimetric analysis. The marked impact of various operating conditions, i.e. dose, concentration, time, pH and temperature on the adsorption process was investigated. Increasing pH resulted in an increase of percent dye adsorption, and the adsorption mechanism was occurred by electrostatic attraction between negative adsorbent surface and positive dye molecules. The equilibrium data suited with Langmuir isotherm model while the adsorption practice followed the pseudo-second-order kinetic model. Higher temperature reduced the adsorption of dye molecules. The adsorption process was spontaneous, exothermic and chemical. The critical statistical analysis of the experimental results was directed by forming the design of the experiment, which was further, optimized by ANOVA, 3D and perturbation plots. The error and predicted values of both the studied responses as derived from the statistical model showed the agreeable results. 0.1 N HCl was found to be effective in complete desorption. The results are very practical and prove the effectiveness of walnut shell powder in the usage of decolorization for methylene blue.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...