Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Ethnopharmacol ; 328: 118132, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38565411

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Infections caused by parasitic worms or helminth continue to pose a great burden on human and animal health, particularly in underdeveloped tropical and subtropical countries where they are endemic. Current anthelmintic drugs present serious limitations and the emergence of drug resistance has made it increasingly challenging to combat such infections (helminthiases). In Bangladesh, medicinal plants are often used by indigenous communities for the treatment of helminthiases. Knowledge on such plants along with screening for their anthelmintic activity has the potential to lead to the discovery of phytochemicals that could serve as novel molecular scaffolds for the development of new anthelminthic drugs. AIM OF THE STUDY: The purpose of this study was i) to conduct an ethnobotanical survey to gather data on Bangladeshi medicinal plants used in the treatment of helminthiases, ii) to test plants with the highest use values for their in vitro anthelmintic activity, and iii) to carry out in silico screening on phytochemicals present in the most active plant extract to investigate their ability to disrupt ß-tubulin function in helminths. METHODS: The ethnobotanical survey was conducted across three sub-districts of Bangladesh, namely Mathbaria, Phultala and Khan Jahan Ali. The in vitro screening for anthelmintic activity was performed in a motility test using adult Haemonchus contortus worms. Virtual screening using PyRx was performed on the phytochemicals reported from the most active plant, exploring their interactions with the colchicine binding site of the ß-tubulin protein target (PDB ID: 1SA0). RESULTS: The survey respondents reported a total of 32 plants for treating helminthiases. Based on their use values, the most popular choices were Ananas comosus (L.) Merr., Azadirachta indica A.Juss., Carica papaya L., Citrus maxima (Burm.) Merr., Curcuma longa L., Momordica charantia L., Nigella sativa L. and Syzygium cumini (L.) Skeels. In vitro anthelmintic testing revealed that A. indica leaves and bark had the highest activity with LC50 values of 16 mg/mL in both cases. Other plant extracts also exhibited good anthelmintic activity with LC50 values ranging from 16 to 52 mg/mL, while the value for albendazole (positive control) was 8.39 mg/mL. The limonoids nimbolide and 28-deoxonimbolide showed a binding affinity of -8.9 kcal/mol, and satisfied all drug-likeness parameters. The control ligand N-deacetyl-N-(2-mercaptoacetyl)colchicine had a binding affinity of -6.9 kcal/mol. CONCLUSION: Further in silico and in vitro studies are warranted on the identified limonoids to confirm the potential of these derivatives as novel drug templates for helminthiases. The current study supports the need for an ethnobotanical survey-based approach to discover novel drug templates for helminthiases.


Assuntos
Anti-Helmínticos , Haemonchus , Helmintíase , Limoninas , Plantas Medicinais , Adulto , Animais , Humanos , Plantas Medicinais/química , Tubulina (Proteína) , Anti-Helmínticos/farmacologia , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Compostos Fitoquímicos/farmacologia , Colchicina
2.
Fitoterapia ; 175: 105896, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38471574

RESUMO

Morroniside (MOR) is an iridoid glycoside and the main active principle of the medicinal plant, Cornus officinalis Sieb. This phytochemical is associated with numerous health benefits due to its antioxidant properties. The primary objective of the present study was to assess the pharmacological effects and underlying mechanisms of MOR, utilizing published data obtained from literature databases. Data collection involved accessing various sources, including PubMed/Medline, Scopus, Science Direct, Google Scholar, Web of Science, and SpringerLink. Our findings demonstrate that MOR can be utilized for the treatment of several diseases and disorders, as numerous studies have revealed its significant therapeutic activities. These activities encompass anti-inflammatory, antidiabetic, lipid-lowering capability, anticancer, trichogenic, hepatoprotective, gastroprotective, osteoprotective, renoprotective, and cardioprotective effects. MOR has also shown promising benefits against various neurological ailments, including Alzheimer's disease, Parkinson's disease, spinal cord injury, cerebral ischemia, and neuropathic pain. Considering these therapeutic features, MOR holds promise as a lead compound for the treatment of various ailments and disorders. However, further comprehensive preclinical and clinical trials are required to establish MOR as an effective and reliable therapeutic agent.


Assuntos
Cornus , Glicosídeos , Compostos Fitoquímicos , Animais , Humanos , Antioxidantes/farmacologia , Cornus/química , Glicosídeos/farmacologia , Glicosídeos/isolamento & purificação , Estrutura Molecular , Compostos Fitoquímicos/farmacologia , Compostos Fitoquímicos/isolamento & purificação
3.
Heliyon ; 9(10): e20636, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37842564

RESUMO

Mycobacterium tuberculosis is one of the major invasive intracellular pathogens causing most deaths by a single infectious agent. The interaction between host immune cells and this pathogen is the focal point of the disease, Tuberculosis. Host immune cells not only mount the protective action against this pathogen but also serve as the primary niche for growth. Thus, recognition of this pathogen by host immune cells and following signaling cascades are key dictators of the disease state. Immune cells, mainly belonging to myeloid cell lineage, recognize a wide variety of Mycobacterium tuberculosis ligands ranging from carbohydrate and lipids to proteins to nucleic acids by different membrane-bound and soluble pattern recognition receptors. Simultaneous interaction between different host receptors and pathogen ligands leads to immune-inflammatory response as well as contributes to virulence. This review summarizes the contribution of pattern recognition receptors of host immune cells in recognizing Mycobacterium tuberculosis and subsequent initiation of signaling pathways to provide the molecular insight of the specific Mtb ligands interacting with specific PRR, key adaptor molecules of the downstream signaling pathways and the resultant effector functions which will aid in identifying novel drug targets, and developing novel drugs and adjuvants.

4.
Fitoterapia ; 169: 105612, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37454777

RESUMO

Since long, medicinal plants or herbs are being used in different traditional treatment systems as therapeutic agents to treat a variety of illnesses. Bixa orellana L., an medicinal plant (family: Bixaceae), is an Ayurvedic herb used to treat dyslipidemia, diarrhoea, and hepatitis since ancient times. B. orellana L., seeds contain an orange-red coloured component known as bixin (C25H30O4), which constitutes 80% of the extract.Chemically, bixin is a natural apocarotenoid, biosynthesized through the oxidative degradation of C40 carotenoids. Bixin helps to regulate the Nrf2/MyD88/TLR4 and TGF-1/PPAR-/Smad3 pathways, which further give it antifibrosis, antioxidant, and anti-inflammatory properties. This current review article presents a comprehensive review of bixin as an anti-inflammatory, antioxidant, anticancer,and skin protecting natural product. In addition, the biosynthesis and molecular target of bixin, along with bixin extraction techniques, are also presented.


Assuntos
Produtos Biológicos , Plantas Medicinais , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Bixaceae/química , Bixaceae/metabolismo , Produtos Biológicos/farmacologia , Produtos Biológicos/metabolismo , Estrutura Molecular , Carotenoides , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/metabolismo , Plantas Medicinais/metabolismo , Extratos Vegetais/farmacologia , Extratos Vegetais/metabolismo
5.
Heliyon ; 9(3): e14386, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36925514

RESUMO

Background: Avian influenza or more commonly known as bird flu is a widespread infectious disease in poultry. This review aims to accumulate information of different natural plant sources that can aid in combating this disease. Influenza virus (IV) is known for its ability to mutate and infect different species (including humans) and cause fatal consequences. Methods: Total 33 plants and 4 natural compounds were identified and documented. Molecular docking was performed against the target viral protein neuraminidase (NA), with some plant based natural compounds and compared their results with standard drugs Oseltamivir and Zanamivir to obtain novel drug targets for influenza in chickens. Results: It was seen that most extracts exhibit their action by interacting with viral hemagglutinin or neuraminidase and inhibit viral entry or release from the host cell. Some plants also interacted with the viral RNA replication or by reducing proinflammatory cytokines. Ethanol was mostly used for extraction. Among all the plants Theobroma cacao, Capparis Sinaica Veil, Androgarphis paniculate, Thallasodendron cillatum, Sinularia candidula, Larcifomes officinalis, Lenzites betulina, Datronia molis, Trametes gibbose exhibited their activity with least concentration (below 10 µg/ml). The dockings results showed that some natural compounds (5,7- dimethoxyflavone, Aloe emodin, Anthocyanins, Quercetin, Hemanthamine, Lyocrine, Terpenoid EA showed satisfactory binding affinity and binding specificity with viral neuraminidase compared to the synthetic drugs. Conclusion: This review clusters up to date information of effective herbal plants to bolster future influenza treatment research in chickens. The in-silico analysis also suggests some potential targets for future drug development but these require more clinical analysis.

6.
Heliyon ; 9(2): e13343, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36816283

RESUMO

Background: The present study was designed to characterize the role of ethanolic leaf extract of Phrynium pubinerve Blume (EPP) supplement in attenuating allergic inflammation, encouraged by the presence of syringic acid in it, as this phenolic acid is reportedly promising in suppressing serum immunoglobulin E (IgE) and inflammatory cytokine levels. Materials and methods: HPLC-DAD dereplication analysis was performed to determine the presence of the vital polyphenolic metabolites. The efficacy of EPP against lipopolysaccharide (LPS)-induced inflammation in RAW 264.7 cells was evaluated by measuring its inhibitory effects on NO and ROS/RNS production. The expressions of major inflammation-associated molecules (iNOS, COX-2, NF-κB, IL-6, and TNF-α) in RAW 264.7 cells were assessed through Western blot. Physiological and behavioral changes, BMI, and different biochemical parameters in mice blood serum were investigated in the toxicological assays. Formaldehyde-induced paw edema test in mice was conducted using established animal model. TDI-induced allergic model in mice was carried out to determine different allergy-like symptoms, and differential white blood cell (WBC) counts in blood and bronchoalveolar lavage (BAL) fluid. The intermolecular interaction analysis of the identified major metabolite of EPP with H1R and iNOS was studied by molecular docking. Results: HPLC-DAD analysis showed the presence of syringic acid (89.19 mg/100 g EPP) and a few other compounds. LPS-induced NO generation was reduced by EPP in a concentration-dependent manner, showing IC50 of 28.20 ± 0.27 µg/mL. EPP exhibited a similar inhibitory effect on ROS/RNS production with IC50 of 29.47 ± 2.19 µg/mL. Western blotting revealed that EPP significantly downregulated the expressions of iNOS, COX-2, NF-κB, IL-6, and TNF-α in RAW 264.7 cells when challenged with LPS. The toxicological assays confirmed the dosage and organ-specific safety of EPP. In the formaldehyde-induced paw edema test, EPP caused a 66.41% reduction in mice paw volume at 500 mg/kg dose. It ameliorated TDI-induced allergy-like symptoms and decreased different inflammatory WBCs in mice's blood and BAL fluid in a dose-dependent manner. Finally, syringic acid demonstrated mentionable intermolecular binding affinity towards H1R (-6.6 Kcal/moL) and iNOS (-6.7 Kcal/moL). Conclusions: Collectively, considerable scientific reasoning was obtained in favor of the suppressive potential of EPP against allergic inflammatory responses that are proposed to be exerted via the downregulation of iNOS, COX-2, and NF-κB expressions, H1R antagonism and suppression of cytokines, such as IL-6, and TNF-α.

7.
J Ethnopharmacol ; 300: 115757, 2023 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-36167233

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Callicarpa arborea Roxb. is widely used as traditional medicine especially by the tribal people of Bangladesh in the management of wide range of ailments. In addition to Bangladesh, the leaves of this plant is utilized as a remedy to various painful and inflammatory conditions including rheumatism, toothache and stomachache in other countries of Indian subcontinent. AIM OF THE STUDY: Depending on the ethnomedicinal uses, we undertook this study to investigate the in-vivo analgesic and anti-inflammatory activities of the methanolic extract of C. arborea Roxb. leaves in Swiss albino mice as well as its chemical composition. MATERIALS AND METHODS: We evaluated the analgesic activity of Callicarpa arborea Roxb. leaves by the acetic acid induced writhing test, the hot plate test, and the formalin test. We undertook the egg albumin induced paw edema test to determine the anti-inflammatory activity of the plant. Furthermore, we conducted the phytochemical profiling by gas chromatography-mass spectrometry (GC-MS). RESULTS: In acute toxicity test, no mortality was observed at the highest dose of 2000 mg/kg b.w. Significant (p < 0.005) inhibition of acetic acid induced writhing was observed at both doses of the extract. A dose dependent increase in the response time was seen in the hot-plate test. In the formalin test, the extract significantly inhibited pain response in both early and late phase. We observed marked anti-inflammatory activity manifested by a significant (p < 0.005) reduction in egg albumin induced paw edema. We identified a total of twenty one compounds in the extract of by GC-MS analysis. CONCLUSION: Taken all into consideration we conclude that the leaves of C. arborea Roxb. possesses potent analgesic and anti-inflammatory activity, thus justifying its's ethnomedicinal use against painful and inflammatory pathological conditions.


Assuntos
Callicarpa , Ácido Acético/uso terapêutico , Albuminas/análise , Analgésicos/farmacologia , Analgésicos/uso terapêutico , Animais , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Edema/induzido quimicamente , Edema/tratamento farmacológico , Humanos , Metanol/uso terapêutico , Camundongos , Dor/induzido quimicamente , Dor/tratamento farmacológico , Dor/patologia , Extratos Vegetais/uso terapêutico , Extratos Vegetais/toxicidade , Folhas de Planta/química
8.
Artigo em Inglês | MEDLINE | ID: mdl-35497914

RESUMO

The Sundarbans, a UNESCO world heritage site, is one of the largest mangrove forests in one stretch. Mangrove plants from this forest are little studied for their endophytic fungi. In this study, we isolated fourteen endophytic fungi from the plants Ceriops decandra and Avicennia officinalis collected from the Sundarbans. Five of them were identified as Aspergillus sp. and one as Penicillium sp. by macroscopic and microscopic observation. Antibacterial activity of the crude extracts obtained from these endophytes was determined against Staphylococcus aureus, Micrococcus luteus, Escherichia coli, and Pseudomonas aeruginosa using resazurin-based microtiter assay. The isolated endophytes showed varying degrees of antibacterial activity with MICs ranging between 5 and 0.078 mg/mL. Molecular identification of the most active endophyte revealed its identity as Aspergillus fumigatus obtained from the leaves of C. decandra. Acute toxicity study of the ethyl acetate extract of A. fumigatus in mice revealed no mortality even at the highest dose of 2000 mg/kg bodyweight, though some opposing results are found in the subacute toxicity study. The extract was subjected to silica gel and Sephadex column chromatography resulting in the isolation of three pure compounds. LC-MS analysis of these pure compounds revealed their identity as fumigaclavine C, azaspirofuran B, and fraxetin. This is the first report of fraxetin from A. fumigatus. All three identified compounds were previously reported for their antibacterial activity against different strains of both Gram-positive and Gram-negative bacteria. Therefore, the observed antibacterial activity of the ethyl acetate (EtOAc) extract of A. fumigatus could be due to the presence of these compounds. These results support the notion of investigating fungal endophytes from the Sundarbans for new antimicrobial compounds.

9.
Artigo em Inglês | MEDLINE | ID: mdl-35368757

RESUMO

Diterpenes and their derivatives have many biological activities, including anti-inflammatory and immunomodulatory effects. To date, several diterpenes, diterpenoids, and their laboratory-derived products have been demonstrated for antiarthritic activities. This study summarizes the literature about diterpenes and their derivatives acting against rheumatoid arthritis (RA) depending on the database reports until 31 August 2021. For this, we have conducted an extensive search in databases such as PubMed, Science Direct, Google Scholar, and Clinicaltrials.gov using specific relevant keywords. The search yielded 2708 published records, among which 48 have been included in this study. The findings offer several potential diterpenes and their derivatives as anti-RA in various test models. Among the diterpenes and their derivatives, andrographolide, triptolide, and tanshinone IIA have been found to exhibit anti-RA activity through diverse pathways. In addition, some important derivatives of triptolide and tanshinone IIA have also been shown to have anti-RA effects. Overall, findings suggest that these substances could reduce arthritis score, downregulate oxidative, proinflammatory, and inflammatory biomarkers, modulate various arthritis pathways, and improve joint destruction and clinical arthritic conditions, signs, symptoms, and physical functions in humans and numerous experimental animals, mainly through cytokine and chemokine as well as several physiological protein interaction pathways. Taken all together, diterpenes, diterpenoids, and their derivatives may be promising tools for RA management.

10.
Biomed Pharmacother ; 150: 112934, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35421786

RESUMO

Cadmium (Cd) is one of the potent occupational and environmental toxicants, which induces oxidative stress to the multiple organs of the body, including liver. The present investigation was planned to evaluate the protective role of vitexin against Cd-prompted hepatotoxicity in rats. 24 male rats were divided into 4 groups viz. control, Cd-induced group (5 mg/kg), Cd + vitexin-treated group (2 mg/kg + 30 mg/kg), and vitexin-treated group (30 mg/kg). After 30 days of treatment, it was indicated that Cd escalated the level of liver function enzymes namely alanine transaminase (ALT), aspartate aminotransferase (AST) and alkaline phosphatase (ALP) as well as total bilirubin. Whereas the levels of albumin and total proteins were decreased in the rats. Additionally, it reduced the enzymatic activities of catalase (CAT), superoxide dismutase (SOD), glutathione peroxidase (GPx), glutathione reductase (GSR) and glutathione-S-transferase (GST), in addition to glutathione (GSH) content, whereas levels of malondialdehyde (MDA) and reactive oxygen species (ROS) were escalated. Furthermore, level of nuclear factor-kappa B (NF-κB), tumor necrosis factor-alpha (TNF-α), interleukin-1 beta (IL-1ß) and interleukin-6 (IL-6) as well as the activity of cyclooxygenase-2 (COX-2) were increased. Besides, the level of Bax, caspase-9 and caspase-3 were elevated, while the Bcl-2 level was reduced following the Cd intoxication. Histopathological observation revealed significant hepatic tissue damage in Cd-administered rats. However, treatment of rats with vitexin significantly (p < 0.05) improved the Cd-induced disruptions in biochemical parameters as well as histological damages. Therefore, it is concluded that vitexin could be used as a therapeutic agent to counter the Cd-generated hepatic toxicity in rats owing to its anti-oxidant, anti-apoptotic and anti-inflammatory potential.


Assuntos
Cádmio , Doença Hepática Induzida por Substâncias e Drogas , Animais , Antioxidantes/metabolismo , Apigenina , Cádmio/toxicidade , Doença Hepática Induzida por Substâncias e Drogas/tratamento farmacológico , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/prevenção & controle , Glutationa/metabolismo , Fígado/metabolismo , Masculino , Estresse Oxidativo , Ratos
11.
Adv Pharmacol Pharm Sci ; 2021: 1540336, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34957401

RESUMO

Plants act as a rich source of novel natural pesticides. In the backdrop of the recent revival of interest in developing plant-based insecticides, this study was carried out to investigate the pesticidal activity of Sundarban mangrove plants. A total of nine different plant parts from five plants, namely, Aegiceras corniculatum, Excoecaria agallocha, Heritiera fomes, Xylocarpus moluccensis, and Xylocarpus granatum, were extracted with methanol and tested for insecticidal activity against two common stored product pests Sitophilus oryzae and Sitophilus zeamais using direct contact feeding deterrent wafer disc method. Three bark extracts from A. corniculatum, E. agallocha, and H. fomes showed potent and statistically significant insecticidal activity against both S. oryzae and S. zeamais pests (80-100% mortality). All the active bark extracts were further fractionated using C-18 solid-phase extraction (SPE) columns and tested for their insecticidal activity against S. oryzae pest to identify the active fraction. Only the SPE4 fraction (100% MeOH) from all the three active plants showed the activity against S. oryzae pest with a lethal concentration 50% (LC50) value of 0.5, 1.0, and 1.5 mg/disc for A. corniculatum, E. agallocha, and H. fomes, respectively. The active fraction of A. corniculatum was further profiled for identification of active compounds using LC-ESI-MS and identified (along with some unknown peaks) two previously reported compounds at m/z 625.17630 (isorhamnetin 3-O-rutinoside) and 422.25346 (paspaline) as major constituents. Insecticidal activities of these plants are reported in this study for the first time and would be useful in promoting research aiming for the development of new biopesticides from mangrove plants.

12.
Artigo em Inglês | MEDLINE | ID: mdl-34504532

RESUMO

Liver diseases are quite prevalant in many densely populated countries, including Bangladesh. The liver and its hepatocytes are targeted by virus and microbes, as well as by chemical environmental toxicants, causing wide-spread disruption of metabolic fuctions of the human body, leading to death from end-stage liver diseases. The aim of this review is to systematically explore and record the potential of Bangladeshi ethnopharmacological plants to treat liver diseases with focus on their sources, constituents, and therapeutic uses, including mechanisms of actions (MoA). A literature survey was carried out using Pubmed, Google Scholar, ScienceDirect, and Scopus databases with articles reported until July, 2020. A total of 88 Bangladeshi hepatoprotective plants (BHPs) belonging to 47 families were listed in this review, including Euphorbiaceae, Cucurbitaceae, and Compositae families contained 20% of plants, while herbs were the most cited (51%) and leaves were the most consumed parts (23%) as surveyed. The effect of BHPs against different hepatotoxins was observed via upregulation of antioxidant systems and inhibition of lipid peroxidation which subsequently reduced the elevated liver biomarkers. Different active constituents, including phenolics, curcuminoids, cucurbitanes, terpenoids, fatty acids, carotenoids, and polysaccharides, have been reported from these plants. The hepatoameliorative effect of these constituents was mainly involved in the reduction of hepatic oxidative stress and inflammation through activation of Nrf2/HO-1 and inhibition of NF-κB signaling pathways. In summary, BHPs represent a valuable resource for hepatoprotective lead therapeutics which may offer new alternatives to treat liver diseases.

14.
Biochem Biophys Rep ; 25: 100909, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33521336

RESUMO

Date palm (P. dactylifera) plays a vital role in ethnomedicinal practices in several parts of the world. There are over 2000 cultivars of date palm that differ in chemical composition and extent of bioactivity. The present study was undertaken to comparatively evaluate the antioxidant potential of three cultivars of date palm (Ajwah, Safawy and Sukkari) from Saudi Arabia and analyze their phenolic constituents in order to draw a rationale for their activity. Antioxidant activities of the date cultivars were evaluated by different quantitative methods including 2,2-diphenyl-1-picrylhydrazyl (DPPH) and hydroxyl radical scavenging assay, total antioxidant capacity, reducing power, total phenolic (TPC), flavonoid (TFC) and tannin content (TTC), while qualitative phenolic composition was determined using ultra performance liquid chromatography coupled to quadropole time of flight mass spectrometry (UPLC-QTOF-MS). All the three date extracts showed good DPPH radical scavenging (IC50 103-177 µg/mL) and hydroxyl radical scavenging (IC50 1.1-1.55 mg/mL) activity and total antioxidant capacity (IC50 87-192 µg/mL). The reducing power was also comparable to that of ascorbic acid, used as standard in above experiments. All the three samples contain significant amount of major antioxidant components (phenolic, flavonoid and tannin) that successfully correlates with the results of radical scavenging assays. UPLC-QTOF-MS revealed a total of 22 compounds in these date cultivars classified into common phenolics, flavonoids, sterols and phytoestrogens. Significant variation in the degree of antioxidant activity of these three date cultivars can be attributed to the difference in the content and composition of phenolic compounds.

15.
Semin Cancer Biol ; 69: 52-68, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-32014609

RESUMO

Nanotechnology is reshaping health care strategies and is expected to exert a tremendous impact in the coming years offering better healthcare facilities. It has led to not only therapeutic drug delivery feasibility but also to diagnostics. Materials in the size of nano range (1-100 nm) used in the design, fabrication, regulation, and application of therapeutic drugs or devices are classified as medical nanotechnology and nanopharmacology. Delivery of more complex molecules to the specific site of action as well as gene therapy has pushed forward the nanoparticle-based drug delivery to its maximum. Areas that benefit from nano-based drug delivery systems are cancer, diabetes, infectious diseases, neurodegenerative diseases, blood disorders and orthopedic-related ailments. Moreover, development of nanotherapeutics with multi-functionalities has a considerable potential to fill the gaps that exist in the present therapeutic domain. In cancer treatment, nanomedicines have superiority over current therapeutic practices as they can effectively deliver the drug to the affected tissues, thus reducing drug toxicities. Along this line, polymeric conjugates of asparaginase and polymeric micelles of paclitaxel have recently been recommended for the treatment of various types of cancers. Nanotechnology-based therapeutics and diagnostics provide greater effectiveness with less or no toxicity concerns. Similarly, diagnostic imaging holds promising future applications with newer nano-level imaging elements. Advancements in nanotechnology have emerged to a newer direction which use nanorobotics for various applications in healthcare. Accordingly, this review comprehensively highlights the potentialities of various nanocarriers and nanomedicines for multifaceted applications in diagnostics and drug delivery, especially the potentialities of polymeric nanoparticle, nanoemulsion, solid-lipid nanoparticle, nanostructured lipid carrier, self-micellizing anticancer lipids, dendrimer, nanocapsule and nanosponge-based therapeutic approaches in the field of cancer. Furthermore, this article summarizes the most recent literature pertaining to the use of nano-technology in the field of medicine, particularly in treating cancer patients.


Assuntos
Antineoplásicos/administração & dosagem , Sistemas de Liberação de Medicamentos , Nanomedicina , Nanopartículas/administração & dosagem , Neoplasias/diagnóstico , Neoplasias/tratamento farmacológico , Animais , Humanos , Nanopartículas/química
16.
Phytochem Anal ; 32(3): 228-241, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-32893413

RESUMO

INTRODUCTION: Organic molecules that interact with the cannabinoid receptors are called cannabinoids, which can be endogenous, natural or synthetic compounds. They possess similar pharmacological properties as produced by the plant, Cannabis sativa L. Before cannabinoids can be analysed, they need to be extracted from the matrices. OBJECTIVE: To review literature on the methods and protocols for the extraction of naturally occurring cannabinoids. METHODOLOGY: An extensive literature search was performed incorporating several databases, notably, Web of Knowledge, PubMed and Google Scholar, and other relevant published materials. The keywords used in the search, in various combinations, with cannabinoids and extraction being present in all combinations, were Cannabis, hemp, cannabinoids, Cannabis sativa, marijuana, and extraction. RESULTS: In addition to classical maceration with organic solvents, e.g. ethanol, pressurised solvent extraction, solvent heat reflux, Soxhlet extraction, supercritical fluid extraction, ultrasound-assisted extraction and microwave-assisted extraction, are routinely used nowadays for the extraction of cannabinoids from plant materials and cannabis consumer products. For the extraction of cannabinoids from biological samples, e.g. human blood, and also from food and beverages, and wastewater, solid-phase extraction and its variants, as well as liquid-liquid extraction are commonly used. Parameters for extraction can be optimised by response surface methodology or other mathematical modelling tools. There are at least six US patents on extraction of cannabinoids available to date. CONCLUSIONS: Irrespective of the extraction method, extraction temperature, extraction time and extraction pressure play a vital role in overall yield of extraction. Solvent polarity can also be an important factor in some extraction methods.


Assuntos
Canabinoides , Cannabis , Canabinoides/análise , Extração Líquido-Líquido , Extratos Vegetais , Solventes
17.
Curr Drug Targets ; 22(6): 656-671, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-32981501

RESUMO

Pain is an unpleasant sensation that has complex and varying causative etiology. Modern drug discovery focuses on identifying potential molecules that target multiple pathways with a safer profile compared to those with a single target. The current treatment of pain and inflammation with the available therapeutics has a number of major side effects. Pain is one of the major clinical problems that need functional therapeutics which act on multiple targets and with low toxicity. Curcumin, a naturally occurring polyphenolic compound from Curcuma longa, has been used for years in Ayurvedic, Chinese, and in many other systems of traditional medicine. Pre-clinical data published thus far demonstrated that curcumin possesses multi-target biological functions, suggesting its potential use to cure different diseases. However, there is no or very brief systematic review of its potential use in pain and inflammation with underlying mechanisms for such activities. Accordingly, the aim of the current review was to update the pre-clinical data of curcumin and its multiple targeting pathways for analgesic and anti-inflammatory effects, and to further propose a molecular mechanism(s). A literature study was conducted using different known databases, including Pubmed, SciFinder, Google Scholar, and Science Direct. Available pre-clinical data suggest the ameliorating effect of curcumin in pain and inflammation is rendered through the modulation of pain pathways, including inhibition of a number of pro-inflammatory mediators, inhibition of oxidative stress and cyclooxygenase-2 (COX-2), down-regulation of Ca2+/calmodulin-depend protein kinase II (CaMKIIα) and calcium channels like transient receptor potential (TRP), modulation of metabotropic glutamate receptor-2 (mGlu2), modulation of monoamine system, inhibition of JAK2/STAT3 signaling pathway, remodeling of extracellular matrix proteins, inhibition of apoptosis, inhibition of JNK/MAPK and ERK/CREB signaling pathway, and activation of the opioid system. Taken all together, it is evident that curcumin is one of the promising, safe, and natural polyphenolic molecules that target multiple molecular pathways in pain and can be beneficial in the treatment and management of pain and inflammation.


Assuntos
Curcumina , Inflamação , Dor , Apoptose , Curcumina/farmacologia , Curcumina/uso terapêutico , Humanos , Inflamação/tratamento farmacológico , Dor/tratamento farmacológico , Transdução de Sinais/efeitos dos fármacos
18.
Trends Food Sci Technol ; 104: 219-234, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32836826

RESUMO

BACKGROUND: Garlic (Allium sativum L.) is a common herb consumed worldwide as functional food and traditional remedy for the prevention of infectious diseases since ancient time. Garlic and its active organosulfur compounds (OSCs) have been reported to alleviate a number of viral infections in pre-clinical and clinical investigations. However, so far no systematic review on its antiviral effects and the underlying molecular mechanisms exists. SCOPE AND APPROACH: The aim of this review is to systematically summarize pre-clinical and clinical investigations on antiviral effects of garlic and its OSCs as well as to further analyse recent findings on the mechanisms that underpin these antiviral actions. PubMed, Cochrane library, Google Scholar and Science Direct databases were searched and articles up to June 2020 were included in this review. KEY FINDINGS AND CONCLUSIONS: Pre-clinical data demonstrated that garlic and its OSCs have potential antiviral activity against different human, animal and plant pathogenic viruses through blocking viral entry into host cells, inhibiting viral RNA polymerase, reverse transcriptase, DNA synthesis and immediate-early gene 1(IEG1) transcription, as well as through downregulating the extracellular-signal-regulated kinase (ERK)/mitogen activated protein kinase (MAPK) signaling pathway. The alleviation of viral infection was also shown to link with immunomodulatory effects of garlic and its OSCs. Clinical studies further demonstrated a prophylactic effect of garlic in the prevention of widespread viral infections in humans through enhancing the immune response. This review highlights that garlic possesses significant antiviral activity and can be used prophylactically in the prevention of viral infections.

19.
Front Pharmacol ; 11: 565, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32477108

RESUMO

The Solanaceae is an important plant family that has been playing an essential role in traditional medicine and human nutrition. Members of the Solanaceae are rich in bioactive metabolites and have been used by different tribes around the world for ages. Antimicrobial peptides (AMPs) from plants have drawn great interest in recent years and raised new hope for developing new antimicrobial agents for meeting the challenges of antibiotic resistance. This review aims to summarize the reported AMPs from plants of the Solanaceae with possible molecular mechanisms of action as well as to correlate their traditional uses with reported antimicrobial actions of the peptides. A systematic literature study was conducted using different databases until August 2019 based on the inclusion and exclusion criteria. According to literature, a variety of AMPs including defensins, protease inhibitor, lectins, thionin-like peptides, vicilin-like peptides, and snaking were isolated from plants of the Solanaceae and were involved in their defense mechanism. These peptides exhibited significant antibacterial, antifungal and antiviral activity against organisms for both plant and human host. Brugmansia, Capsicum, Datura, Nicotiana, Salpichora, Solanum, Petunia, and Withania are the most commonly studied genera for AMPs. Among these genera, Capsicum and the Solanum ranked top according to the total number of studies (35%-38% studies) for different AMPs. The mechanisms of action of the reported AMPs from Solanaceae was not any new rather similar to other reported AMPs including alteration of membrane potential and permeability, membrane pore formation, and cell aggregation. Whereas, induction of cell membrane permiabilization, inhibition of germination and alteration of hyphal growth were reported as mechanisms of antifungal activity. Plants of the Solanaceae have been used traditionally as antimicrobial, insecticidal, and antiinfectious agents, and as poisons. The reported AMPs from the Solanaceae are the products of chemical shields to protect plants from microorganisms and pests which unfold an obvious link with their traditional medicinal use. In summary, it is evident that AMPs from this family possess considerable antimicrobial activity against a wide range of bacterial and fungal pathogens and can be regarded as a potential source for lead molecules to develop new antimicrobial agents.

20.
Anticancer Agents Med Chem ; 20(14): 1636-1647, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32560616

RESUMO

BACKGROUND: Cancer is a dreadful disease causing thousands of deaths per year worldwide, which requires precision diagnostics and therapy. Although the selection of therapeutic regimens depends on the cancer type, chemotherapy remains a sustainable treatment strategy despite some of its known side-effects. To date, a number of natural products and their derivatives or analogues have been investigated as potent anticancer drugs. These drug discoveries have aimed for targeted therapy and reduced side-effects, including natural therapeutic regimens. OBJECTIVE: This review introduces a prospective fungal-derived polyphenol, Hispolon (HIS), as an anticancer agent. Accordingly, this review focuses on exploring the anticancer effect of hispolon based on information extracted from databases such as PubMed, ScienceDirect, MedLine, Web of Science, and Google Scholar. METHODS: A literature search in PubMed, ScienceDirect, MedLine, Web of Science, and Google Scholar was accomplished, using the keyword 'Hispolon', pairing with 'cancer', 'cytotoxicity', 'cell cycle arrest', 'apoptosis', 'metastasis', 'migration', 'invasion', 'proliferation', 'genotoxicity', 'mutagenicity', 'drug-resistant cancer', 'autophagy', and 'estrogen receptor. RESULTS: Database-dependent findings from reported research works suggest that HIS can exert anticancer effects by modulating multiple molecular and biochemical pathways, including cell cycle arrest, apoptosis, autophagy, inhibition of proliferation, metastasis, migration, and invasion. Moreover, HIS inhibits the estrogenic activity and exhibits chemoprevention prospects, possibly due to its protective effects such as anticancer and anti-inflammatory mechanisms. To date, a number of HIS derivatives and analogues have been introduced for their anticancer effects in numerous cancer cell lines. CONCLUSION: Data obtained from this review suggest that hispolon and some of its derivatives can be promising anticancer agents, and may become plant-based cancer chemotherapeutic leads for the development of potent anticancer drugs, alone or in combination with other chemotherapeutic agents.


Assuntos
Antineoplásicos/farmacologia , Catecóis/farmacologia , Fungos/química , Antineoplásicos/química , Apoptose/efeitos dos fármacos , Catecóis/química , Proliferação de Células/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Estrutura Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...