Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Opt Express ; 30(5): 7340-7341, 2022 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-35299498

RESUMO

In Sec. 6 (polarization monitor) of our recent publication [Opt. Express29(5), 7024 (2021)10.1364/OE.417455], we assumed a small value of δ. This is however incorrect. The correct approximation for small ß leads to the updated Eqs. (10)-(11), resulting in a corrected Fig. 12.

2.
Opt Express ; 29(5): 7024-7048, 2021 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-33726212

RESUMO

We present an improved active fiber-based retroreflector (AFR) providing high-quality wavefront-retracing anti-parallel laser beams in the near UV. We use our improved AFR for first-order Doppler-shift suppression in precision spectroscopy of atomic hydrogen, but our setup can be adapted to other applications where wavefront-retracing beams with defined laser polarization are important. We demonstrate how weak aberrations produced by the fiber collimator may remain unobserved in the intensity of the collimated beam but limit the performance of the AFR. Our general results on characterizing these aberrations with a caustic measurement can be applied to any system where a collimated high-quality laser beam is required. Extending the collimator design process by wave optics propagation tools, we achieved a four-lens collimator for the wavelength range 380-486 nm with the beam quality factor of M2 ≃ 1.02, limited only by the not exactly Gaussian beam profile from the single-mode fiber. Furthermore, we implemented precise fiber-collimator alignment and improved the collimation control by combining a precision motor with a piezo actuator. Moreover, we stabilized the intensity of the wavefront-retracing beams and added in-situ monitoring of polarization from polarimetry of the retroreflected light.

3.
Science ; 370(6520): 1061-1066, 2020 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-33243883

RESUMO

We have performed two-photon ultraviolet direct frequency comb spectroscopy on the 1S-3S transition in atomic hydrogen to illuminate the so-called proton radius puzzle and to demonstrate the potential of this method. The proton radius puzzle is a significant discrepancy between data obtained with muonic hydrogen and regular atomic hydrogen that could not be explained within the framework of quantum electrodynamics. By combining our result [f 1S-3S = 2,922,743,278,665.79(72) kilohertz] with a previous measurement of the 1S-2S transition frequency, we obtained new values for the Rydberg constant [R ∞ = 10,973,731.568226(38) per meter] and the proton charge radius [r p = 0.8482(38) femtometers]. This result favors the muonic value over the world-average data as presented by the most recent published CODATA 2014 adjustment.

4.
Science ; 369(6501)2020 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-32675346

RESUMO

Optical frequency combs were introduced around 20 years ago as a laser technology that could synthesize and count the ultrafast rate of the oscillating cycles of light. Functioning in a manner analogous to a clockwork of gears, the frequency comb phase-coherently upconverts a radio frequency signal by a factor of [Formula: see text] to provide a vast array of evenly spaced optical frequencies, which is the comb for which the device is named. It also divides an optical frequency down to a radio frequency, or translates its phase to any other optical frequency across hundreds of terahertz of bandwidth. We review the historical backdrop against which this powerful tool for coherently uniting the electromagnetic spectrum developed. Advances in frequency comb functionality, physical implementation, and application are also described.

5.
Sci Rep ; 8(1): 10643, 2018 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-30006607

RESUMO

The quantum Zeno effect (QZE) is not only interesting as a manifestation of the counterintuitive behavior of quantum mechanics, but may also have practical applications. When a spectroscopy laser is applied to target atoms or ions prepared in an initial state, the Rabi flopping of an auxiliary transition sharing one common level can be inhibited. This effect is found to be strongly dependent on the detuning of the spectroscopy laser and offers a sensitive spectroscopy signal which allows for high precision spectroscopy of transitions with a small excitation rate. We demonstrate this method with direct frequency comb spectroscopy using the minute power of a single mode to drive a dipole allowed transition in a single trapped ion. Resolving the individual modes of the frequency comb demonstrates that the simple instantaneous quantum collapse description of the QZE can not be applied here, as these modes need several pulses to build up.

6.
Science ; 358(6359): 79-85, 2017 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-28983046

RESUMO

At the core of the "proton radius puzzle" is a four-standard deviation discrepancy between the proton root-mean-square charge radii (rp) determined from the regular hydrogen (H) and the muonic hydrogen (µp) atoms. Using a cryogenic beam of H atoms, we measured the 2S-4P transition frequency in H, yielding the values of the Rydberg constant R∞ = 10973731.568076(96) per meterand rp = 0.8335(95) femtometer. Our rp value is 3.3 combined standard deviations smaller than the previous H world data, but in good agreement with the µp value. We motivate an asymmetric fit function, which eliminates line shifts from quantum interference of neighboring atomic resonances.

7.
Opt Express ; 25(17): 20502-20510, 2017 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-29041730

RESUMO

We demonstrate nonlinear pulse compression by multi-pass cell spectral broadening (MPCSB) from 860 fs to 115 fs with compressed pulse energy of 7.5 µJ, average power of 300 W and close to diffraction-limited beam quality. The transmission of the compression unit is >90%. The results show that this recently introduced compression scheme for peak powers above the threshold for catastrophic self-focusing can be scaled to smaller pulse energies and can achieve a larger compression factor than previously reported. Good homogeneity of the spectral broadening across the beam profile is verified, which distinguishes MPCSB among other bulk compression schemes.

8.
Nat Commun ; 8(1): 44, 2017 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-28663571

RESUMO

Optical frequency combs have revolutionized the measurement of optical frequencies and improved the precision of spectroscopic experiments. Besides their importance as a frequency-measuring ruler, the frequency combs themselves can excite target transitions (direct frequency comb spectroscopy). The direct frequency comb spectroscopy may extend the optical frequency metrology into spectral regions unreachable by continuous wave lasers. In high precision spectroscopy, atoms/ions/molecules trapped in place have been often used as a target to minimize systematic effects. Here, we demonstrate direct frequency comb spectroscopy of single 25Mg ions confined in a Paul trap, at deep-UV wavelengths. Only one mode out of about 20,000 can be resonant at a time. Even then we can detect the induced fluorescence with a spatially resolving single photon camera, allowing us to determine the absolute transition frequency. The demonstration shows that the direct frequency comb spectroscopy is an important tool for frequency metrology for shorter wavelengths where continuous wave lasers are unavailable.Frequency combs are useful tools in high precision measurement including atomic transitions and atomic clocks. Here the authors demonstrate direct frequency comb spectroscopy to shorter wavelengths by probing a transition frequency in a trapped Mg+ ion using a single mode of a UV frequency comb.

9.
Opt Lett ; 41(8): 1853-6, 2016 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-27082362

RESUMO

A power-scalable concept for carrier-envelope-phase stabilization is presented. It takes advantage of simultaneous pumping of the zero- and first-phonon absorption line of Yb:YAG at 969 and 940 nm. The concept was implemented to lock the carrier-envelope-offset frequency of a 45 W average power Kerr-lens mode-locked thin-disk oscillator. The lock performance is compared to previous experiments where carrier-envelope-stabilization was realized by means of cavity loss modulation.

10.
Phys Rev Lett ; 116(4): 043002, 2016 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-26871326

RESUMO

We demonstrate Doppler cooling of trapped magnesium ions using a frequency comb at 280 nm obtained from a frequency tripled Ti:sapphire laser. A comb line cools on the 3s_{1/2}-3p_{3/2} transition, while the nearest blue-detuned comb line contributes negligible heating. We observe the cooling-heating transition and long-term cooling of ion chains with several sympathetically cooled ions. Spatial thermometry shows that the ion is cooled to near the Doppler limit. Doppler cooling with frequency combs has the potential to open many additional atomic species to laser cooling by reaching further into the vacuum and extreme ultraviolet via high-harmonic generation and by providing a broad bandwidth from which multiple excitation sidebands can be obtained.

11.
Phys Rev Lett ; 110(23): 230801, 2013 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-25167479

RESUMO

We have measured the frequency of the extremely narrow 1S-2S two-photon transition in atomic hydrogen using a remote cesium fountain clock with the help of a 920 km stabilized optical fiber. With an improved detection method we obtain f(1S-2S)=2466 061 413 187 018 (11) Hz with a relative uncertainty of 4.5×10(-15), confirming our previous measurement obtained with a local cesium clock [C. G. Parthey et al., Phys. Rev. Lett. 107, 203001 (2011)]. Combining these results with older measurements, we constrain the linear combinations of Lorentz boost symmetry violation parameters c((TX))=(3.1±1.9)×10(-11) and 0.92c((TY))+0.40c((TZ))=(2.6±5.3)×10(-11) in the standard model extension framework [D. Colladay, V. A. Kostelecký, Phys. Rev. D. 58, 116002 (1998)].

12.
Nature ; 485(7400): 611-4, 2012 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-22660320

RESUMO

The best spectrographs are limited in stability by their calibration light source. Laser frequency combs are the ideal calibrators for astronomical spectrographs. They emit a spectrum of lines that are equally spaced in frequency and that are as accurate and stable as the atomic clock relative to which the comb is stabilized. Absolute calibration provides the radial velocity of an astronomical object relative to the observer (on Earth). For the detection of Earth-mass exoplanets in Earth-like orbits around solar-type stars, or of cosmic acceleration, the observable is a tiny velocity change of less than 10 cm s(-1), where the repeatability of the calibration--the variation in stability across observations--is important. Hitherto, only laboratory systems or spectrograph calibrations of limited performance have been demonstrated. Here we report the calibration of an astronomical spectrograph with a short-term Doppler shift repeatability of 2.5 cm s(-1), and use it to monitor the star HD 75289 and recompute the orbit of its planet. This repeatability should make it possible to detect Earth-like planets in the habitable zone of star or even to measure the cosmic acceleration directly.

13.
Opt Lett ; 37(4): 503-5, 2012 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-22344087

RESUMO

We present the first (to our best knowledge) femtosecond enhancement cavity in the visible wavelength range for ultraviolet frequency comb generation. The cavity is seeded at 518 nm by a frequency-doubled Yb fiber laser and operates at a peak intensity of 1.2×10(13) W/cm(2). High harmonics of up to the ninth order (~57 nm) are generated in an intracavity xenon gas jet. Intracavity high harmonic powers of several milliwatts for the third harmonic order and microwatts for the fifth harmonic order prove the potential of the "green cavity" as an efficient ultraviolet frequency comb source for future spectroscopic experiments. A limiting degradation effect of the cavity mirrors is avoided by operating at a constant oxygen background pressure.

14.
Phys Rev Lett ; 107(20): 203001, 2011 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-22181729

RESUMO

We have measured the 1S-2S transition frequency in atomic hydrogen via two-photon spectroscopy on a 5.8 K atomic beam. We obtain f(1S-2S) = 2,466,061,413,187,035 (10)  Hz for the hyperfine centroid, in agreement with, but 3.3 times better than the previous result [M. Fischer et al., Phys. Rev. Lett. 92, 230802 (2004)]. The improvement to a fractional frequency uncertainty of 4.2 × 10(-15) arises mainly from an improved stability of the spectroscopy laser, and a better determination of the main systematic uncertainties, namely, the second order Doppler and ac and dc Stark shifts. The probe laser frequency was phase coherently linked to the mobile cesium fountain clock FOM via a frequency comb.

15.
Opt Lett ; 36(17): 3428-30, 2011 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-21886233

RESUMO

We report on single-pass high-harmonic generation (HHG) with amplified driving laser pulses at a repetition rate of 20.8 MHz. An Yb:YAG Innoslab amplifier system provides 35 fs pulses with 20 W average power at 1030 nm after external pulse compression. Following tight focusing into a xenon gas jet, we observe the generation of high-harmonic radiation of up to the seventeenth order. Our results show that state-of-the-art amplifier systems have become a promising alternative to cavity-assisted HHG for applications that require high repetition rates, such as frequency comb spectroscopy in the extreme UV.

16.
Opt Express ; 18(25): 26184-95, 2010 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-21164968

RESUMO

We apply spatially and spectrally resolved interferometry to measure the complex ratio between the field circulating inside a high-finesse femtosecond enhancement cavity and the seeding field. Our simple and highly sensitive method enables the measurement of single-round-trip group delay dispersion of a fully loaded cavity at resonance for the first time. Group delay dispersion can be determined with a reproducibility better than 1 fs2 allowing the investigation of nonlinear processes triggered by the high intracavity power. The required data acquisition time is less than 1 s.


Assuntos
Interferometria/instrumentação , Dispositivos Ópticos , Transdutores , Desenho de Equipamento , Análise de Falha de Equipamento/instrumentação
17.
Phys Rev Lett ; 104(23): 233001, 2010 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-20867231

RESUMO

Measuring the hydrogen-deuterium isotope shift via two-photon spectroscopy of the 1S-2S transition, we obtain 670,994,334,606(15) Hz. This is a 10-times improvement over the previous best measurement [A. Huber, Phys. Rev. Lett. 80, 468 (1998)] confirming its frequency value. A calculation of the difference of the mean square charge radii of deuterium and hydrogen results in d - p =3.82007(65) fm2, a more than twofold improvement compared to the former value.

18.
Opt Lett ; 35(12): 2052-4, 2010 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-20548383

RESUMO

A passive optical resonator is used to enhance the power of a pulsed 78 MHz repetition rate Yb laser providing 200 fs pulses. We find limitations relating to the achievable time-averaged and peak power, which we distinguish by varying the duration of the input pulses. An intracavity average power of 18 kW is generated with close to Fourier-limited pulses of 10 W average power. Beyond this power level, intensity-related effects lead to resonator instabilities, which can be removed by chirping the seed laser pulses. By extending the pulse duration in this way to 2 ps, we could obtain 72 kW of intracavity circulating power with 50 W of input power.

19.
Artigo em Inglês | MEDLINE | ID: mdl-20040443

RESUMO

We have explored the performance of 2 "dark fibers" of a commercial telecommunication fiber link for a remote comparison of optical clocks. These fibers establish a network in Germany that will eventually link optical frequency standards at PTB with those at the Institute of Quantum Optics (IQ) at the Leibniz University of Hanover, and the Max Planck Institutes in Erlangen (MPL) and Garching (MPQ). We demonstrate for the first time that within several minutes a phase coherent comparison of clock lasers at the few 10(-15) level can also be accomplished when the lasers are more than 100 km apart. Based on the performance of the fiber link to the IQ, we estimate the expected stability for the link from PTB to MPQ via MPL that bridges a distance of approximately 900 km.


Assuntos
Fibras Ópticas , Telecomunicações/instrumentação , Fatores de Tempo , Desenho Assistido por Computador , Desenho de Equipamento , Análise de Falha de Equipamento , Micro-Ondas , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
20.
Science ; 321(5894): 1335-7, 2008 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-18772434

RESUMO

A direct measurement of the universe's expansion history could be made by observing in real time the evolution of the cosmological redshift of distant objects. However, this would require measurements of Doppler velocity drifts of approximately 1 centimeter per second per year, and astronomical spectrographs have not yet been calibrated to this tolerance. We demonstrated the first use of a laser frequency comb for wavelength calibration of an astronomical telescope. Even with a simple analysis, absolute calibration is achieved with an equivalent Doppler precision of approximately 9 meters per second at approximately 1.5 micrometers-beyond state-of-the-art accuracy. We show that tracking complex, time-varying systematic effects in the spectrograph and detector system is a particular advantage of laser frequency comb calibration. This technique promises an effective means for modeling and removal of such systematic effects to the accuracy required by future experiments to see direct evidence of the universe's putative acceleration.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...