Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chemosphere ; 285: 131549, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34710965

RESUMO

Osmotic microbial fuel cell (OsMFC) integrating forward osmosis into microbial fuel cell (MFC) favors the merits of organic removal, bioenergy generation, and high-quality water extraction from wastewater. This study demonstrated an 18.7% power density enhancement over a conventional MFC due to the water-flux-facilitated proton advection and net positive charge (NPC)-flux-promoted countercurrent proton exchange. Among the three examined membrane cleaning methods, chemical cleaning using 0.2% NaClO was found to be especially effective in removing organic foulants composed of proteins and polysaccharides, resulting in a water flux recovery of up to 91.6% with minimal impact on average maximum power density and internal resistance. The effects of operating parameters including anode HRT and draw solution concentration were studied. Shortening HRT from 6.0 to 3.0 h increased power density by 78.0% due to a high organic loading rate and a slightly reduced polarization concentration. Increasing draw solution concentration from 0.2 to 1.0 M NaCl enhanced power density by approximately 2.7-fold due to enhanced proton advection. Water-flux-facilitated proton advection played a more important role in determining the electricity generation performance of OsMFC than the NPC-flux-promoted countercurrent proton exchange under varied operating conditions.


Assuntos
Fontes de Energia Bioelétrica , Eletricidade , Eletrodos , Osmose , Águas Residuárias
2.
Water Res ; 188: 116547, 2021 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-33126002

RESUMO

Membrane bioreactor (MBR) is an advantageous technology for wastewater treatment. However, efficient nutrient removal and membrane fouling mitigation remain major challenges in its applications. In this study, an electroconductive moving bed membrane bioreactor (EcMB-MBR) was proposed for simultaneous removal of organics and nutrients from domestic wastewater. The EcMB-MBR was composed of a submerged MBR, filled with electrodes and free-floating conductive media. Conductive media were introduced to reduce energy consumption in an electrochemical MBR, to improve nitrogen removal, and to mitigate membrane fouling. The results showed that COD, total nitrogen, and total phosphorus removal was up to 97.1 ± 1.4%, 88.8 ± 4.2%, and 99.0 ± 0.9%, respectively, in comparison with those of 93.4 ± 1.5%, 65.2 ± 5.3%, and 20.4 ± 11.3% in a conventional submerged MBR. Meanwhile, a total membrane resistance reduction of 26.7% was obtained in the EcMB-MBR. The optimized operating condition was determined at an intermittent electricity exposure time of 10 min-ON/10 min-OFF, and a direct current density of 15 A/m2. The interactions between electric current and conductive media were explored to understand the working mechanism in this proposed system. The conductive media reduced 21% of the electrical resistivity in the mixed liquor at a selected packing density of 0.20 (v/v). The combination of electrochemical process and conductive media specially enhanced the reduction of nitrate-nitrogen (NO3--N) through hybrid bio-electrochemical denitrification processes. These mechanisms involved with electrochemically assisted autotrophic denitrification by autotrophic denitrifying bacteria. As a result, 5.2% of NO3--N remained in the effluent of EcMB-MBR in comparison with that of 29.5% in the MBR. Membrane fouling was minimized via both mechanical scouring and electrochemical decomposition/precipitation of organic/particulate foulants. Furthermore, a preliminary cost analysis indicated that an additional operating cost of 0.081 USD/m3, accounting for 10 - 30% increment of the operating cost of a conventional MBR, was needed to enhance the nitrogen and phosphorus removal correspondingly in the EcMB-MBR.


Assuntos
Membranas Artificiais , Águas Residuárias , Leitos , Reatores Biológicos , Custos e Análise de Custo , Membranas , Nitrogênio , Eliminação de Resíduos Líquidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...