Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Dev Comp Immunol ; 46(2): 146-54, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24736204

RESUMO

In an attempt to identify a peptidoglycan recognition protein (PGRP) in Penaeus (Penaeus) monodon, in vitro pull-down binding assays were used between shrimp proteins and purified peptidoglycan (PG). By gel electrophoresis and mass spectrometry followed by Mascot program analysis, proteins from shrimp hemocyte peripheral membrane proteins showed significant homology to records for a QM protein, actin and prophenoloxidase 2 precursor (proPO2), while proteins from cell-free plasma showed significant homology to records for a vitellogenin, a fibrinogen related protein (FREP) and a C-type lectin. Due to time and resource limitations, specific binding to PG was examined only for recombinant PmQM protein and PmLec that were synthesized based on sequences reported in the Genbank database (accession numbers FJ766846 and DQ078266, respectively). An in vitro assay revealed that hemocytes would bind with and encapsulate agarose beads coated with recombinant PmQM (rPmQM) or rPmLec and that melanization followed 2h post-encapsulation. ELISA tests confirmed specific binding of rPmQM protein to PG. This is the first time that PmQM has been reported as a potential PGRP in shrimp or any other crustacean. The two other potential PGRP identified (FREP and the vitellin-like protein present in male P. monodon, unlike other vitellin subunits) should also be expressed heterologously and tested for their ability to activate shrimp hemocytes.


Assuntos
Proteínas de Artrópodes/metabolismo , Proteínas de Transporte/metabolismo , Penaeidae/metabolismo , Animais , Proteínas de Artrópodes/química , Proteínas de Artrópodes/genética , Proteínas de Transporte/química , Proteínas de Transporte/genética , Células Cultivadas , Hemócitos/imunologia , Hemócitos/metabolismo , Imunidade Inata , Masculino , Melaninas/biossíntese , Penaeidae/citologia , Penaeidae/imunologia , Peptidoglicano/química , Ligação Proteica , Homologia de Sequência de Aminoácidos
2.
BMC Res Notes ; 3: 315, 2010 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-21092125

RESUMO

BACKGROUND: Based on a report for one species (Scylla serrata), it is widely believed that mud crabs are relatively resistant to disease caused by white spot syndrome virus (WSSV). We tested this hypothesis by determining the degree of susceptibility in two species of mud crabs, Scylla olivacea and Scylla paramamosain, both of which were identified by mitochondrial 16 S ribosomal gene analysis. We compared single-dose and serial-dose WSSV challenges on S. olivacea and S. paramamosain. FINDINGS: In a preliminary test using S. olivacea alone, a dose of 1 × 106 WSSV copies/g gave 100% mortality within 7 days. In a subsequent test, 17 S. olivacea and 13 S. paramamosain were divided into test and control groups for challenge with WSSV at 5 incremental, biweekly doses starting from 1 × 104 and ending at 5 × 106 copies/g. For 11 S. olivacea challenged, 3 specimens died at doses between 1 × 105 and 5 × 105 copies/g and none died for 2 weeks after the subsequent dose (1 × 106 copies/g) that was lethal within 7 days in the preliminary test. However, after the final challenge on day 56 (5 × 106 copies/g), the remaining 7 of 11 S. olivacea (63.64%) died within 2 weeks. There was no mortality in the buffer-injected control crabs. For 9 S. paramamosain challenged in the same way, 5 (55.56%) died after challenge doses between 1 × 104 and 5 × 105 copies/g, and none died for 2 weeks after the challenge dose of 1 × 106 copies/g. After the final challenge (5 × 106 copies/g) on day 56, no S. paramamosain died during 2 weeks after the challenge, and 2 of 9 WSSV-infected S. paramamosain (22.22%) remained alive together with the control crabs until the end of the test on day 106. Viral loads in these survivors were low when compared to those in the moribund crabs. CONCLUSIONS: S. olivacea and S. paramamosain show wide variation in response to challenge with WSSV. S. olivacea and S. paramamosain are susceptible to white spot disease, and S. olivacea is more susceptible than S. paramamosain. Based on our single-challenge and serial challenge results, and on previous published work showing that S. serrata is relatively unaffected by WSSV infection, we propose that susceptibility to white spot disease in the genus Scylla is species-dependent and may also be dose-history dependent. In practical terms for shrimp farmers, it means that S. olivacea and S. paramamosain may pose less threat as WSSV carriers than S. serrata. For crab farmers, our results suggest that rearing of S. serrata would be a better choice than S. paramamosain or S. olivacea in terms of avoiding losses from seasonal outbreaks of white spot disease.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...