Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 76
Filtrar
1.
Biomolecules ; 13(8)2023 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-37627332

RESUMO

Malaria poses a significant global health challenge, resulting in approximately 600,000 deaths each year. Individuals living in regions with endemic malaria have the potential to develop partial immunity, thanks in part to the presence of anti-plasmodium antibodies. As efforts are made to optimize and implement strategies to reduce malaria transmission and ultimately eliminate the disease, it is crucial to understand how these interventions impact naturally acquired protective immunity. To shed light on this, our study focused on assessing antibody responses to a carefully curated library of P. falciparum recombinant proteins (n = 691) using samples collected from individuals residing in a low-malaria-transmission region of Thailand. We conducted the antibody assays using the AlphaScreen system, a high-throughput homogeneous proximity-based bead assay that detects protein interactions. We observed that out of the 691 variable surface and merozoite stage proteins included in the library, antibodies to 268 antigens significantly correlated with the absence of symptomatic malaria in an univariate analysis. Notably, the most prominent antigens identified were P. falciparum erythrocyte membrane protein 1 (PfEMP1) domains. These results align with our previous research conducted in Uganda, suggesting that similar antigens like PfEMP1s might play a pivotal role in determining infection outcomes in diverse populations. To further our understanding, it remains critical to conduct functional characterization of these identified proteins, exploring their potential as correlates of protection or as targets for vaccine development.


Assuntos
Malária Falciparum , Malária , Humanos , Tailândia , Anticorpos , Bioensaio
2.
Sci Rep ; 9(1): 5923, 2019 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-30976034

RESUMO

Malaria symptoms and pathology are initiated by invasion of host erythrocytes by Plasmodium merozoites in a complex process that involves interactions between parasite and host erythrocyte proteins. Erythrocyte invasion presents attractive targets for malaria vaccine and drug development. Recently it was observed that antibodies against PfMSA180 (PF3D7_1014100) are associated with protection from symptomatic malaria, suggesting that this protein is a target of naturally acquired protective antibodies. Here we characterize PfMSA180, a ~170 kDa merozoite surface antigen that is potentially involved in erythrocyte invasion. PfMSA180 synthesized by the wheat germ cell-free system was used to raise antibodies in rabbits. Growth inhibition assays revealed that parasite invasion is inhibited by antibodies to the PfMSA180 C-terminal region, which contains an erythrocyte-binding domain. Surface plasmon resonance analysis showed that PfMSA180 specifically interacts with human erythrocyte integrin associated protein (CD47), suggesting that PfMSA180 plays a role during merozoite invasion of erythrocytes. Polymorphism analysis revealed that pfmsa180 is highly conserved among field isolates. We show that naturally acquired PfMSA180-specific antibodies responses are associated with protective immunity in a malaria-exposed Thai population. In sum, the data presented here supports further evaluation of the conserved erythrocyte-binding C-terminal region of PfMSA180 as an asexual blood-stage malaria vaccine candidate.


Assuntos
Antígeno CD47/metabolismo , Eritrócitos/metabolismo , Vacinas Antimaláricas/metabolismo , Malária Falciparum/prevenção & controle , Merozoítos/metabolismo , Plasmodium falciparum/imunologia , Proteínas de Protozoários/metabolismo , Animais , Anticorpos Antiprotozoários/imunologia , Formação de Anticorpos , Eritrócitos/imunologia , Eritrócitos/parasitologia , Humanos , Vacinas Antimaláricas/administração & dosagem , Vacinas Antimaláricas/imunologia , Malária Falciparum/imunologia , Malária Falciparum/metabolismo , Malária Falciparum/parasitologia , Merozoítos/imunologia , Camundongos , Plasmodium falciparum/metabolismo , Coelhos
3.
Parasitol Int ; 68(1): 87-91, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30342119

RESUMO

Proteins coating Plasmodium merozoite surface and secreted from its apical organelles are considered as promising vaccine candidates for blood-stage malaria. The rhoptry neck protein 12 of Plasmodium falciparum (PfRON12) was recently reported as a protein specifically expressed in schizonts and localized to the rhoptry neck of merozoites. Here, we assessed its potential as a vaccine candidate. We expressed a recombinant PfRON12 protein by a wheat germ cell-free system to obtain anti-PfRON12 antibody. Immunoblot analysis of schizont lysates detected a single band at approximately 40 kDa under reducing conditions, consistent with the predicted molecular weight. Additionally, anti-PfRON12 antibody recognized a single band around 80 kDa under non-reducing conditions, suggesting native PfRON12 forms a disulfide-bond-mediated multimer. Immunofluorescence assay and immunoelectron microscopy revealed that PfRON12 localized to the rhoptry neck of merozoites in schizonts and to the surface of free merozoites. The biological activity of anti-PfRON12 antibody was tested by in vitro growth inhibition assay (GIA), and the rabbit antibodies significantly inhibited merozoite invasion of erythrocytes. We then investigated whether PfRON12 is immunogenic in P. falciparum-infected individuals. The sera from P. falciparum infected individuals in Thailand and Mali reacted with the recombinant PfRON12. Furthermore, human anti-PfRON12 antibodies affinity-purified from Malian serum samples inhibited merozoite invasion of erythrocytes in vitro. Moreover, pfron12 is highly conserved with only 4 non-synonymous mutations in the coding sequence from approximately 200 isolates deposited in PlasmoDB. These results suggest that PfRON12 might be a potential blood-stage vaccine candidate antigen against P. falciparum.


Assuntos
Antígenos de Protozoários/imunologia , Eritrócitos/parasitologia , Merozoítos/fisiologia , Plasmodium falciparum/imunologia , Proteínas de Protozoários/imunologia , Receptores Proteína Tirosina Quinases/imunologia , Animais , Anticorpos Antiprotozoários/sangue , Antígenos de Protozoários/genética , Infecções Assintomáticas/epidemiologia , Ensaio de Imunoadsorção Enzimática , Eritrócitos/imunologia , Imunofluorescência , Humanos , Vacinas Antimaláricas/genética , Vacinas Antimaláricas/imunologia , Malária Falciparum/epidemiologia , Malária Falciparum/imunologia , Malária Falciparum/parasitologia , Malária Falciparum/prevenção & controle , Mali/epidemiologia , Merozoítos/imunologia , Coelhos , Receptores Proteína Tirosina Quinases/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/imunologia , Esquizontes/química , Tailândia/epidemiologia
4.
Parasitol Int ; 69: 25-29, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30385417

RESUMO

Merozoite surface proteins (MSPs) are considered as promising blood-stage malaria vaccine candidates. MSP3 has long been evaluated for its vaccine candidacy, however, the candidacy of other members of MSP3 family is insufficiently characterized. Here, we investigated Plasmodium falciparum MSP11 (PF3D7_1036000), a member of the MSP3 family, for its potential as a blood-stage vaccine candidate. The full-length protein (MSP11-FL) as well as the N-terminal half-MSP11 (MSP11-N), known to be unique among the MSP3 family members, were expressed by wheat germ cell-free system, and used to raise antibodies in rabbit. Immunoblot analysis of schizont lysates probed with anti-MSP11-N antibodies detected double bands at approximately 40 and 60 kDa, consistent with the previous report thus confirming antibodies specificity. However, inconsistent with previously reported merozoite's surface localization, immunofluorescence assay (IFA) revealed that MSP11 likely localizes to rhoptry neck of merozoites in mature schizonts. After invasion, MSP11 localized to parasitophorous vacuole and thereafter in Maurer's clefts in trophozoites. Anti-MSP11-FL antibody levels were significantly higher in asymptomatic than symptomatic P. falciparum cases in malaria low endemic Thailand. This reconfirmed that anti-MSP11 antibodies play an important role in protection against clinical malaria, as previously reported. Furthermore, in vitro growth inhibition assay revealed that anti-MSP11-FL rabbit antibodies biologically function by inhibiting merozoite invasion of erythrocytes. These findings further support the vaccine candidacy of MSP11.


Assuntos
Anticorpos Antiprotozoários/farmacologia , Antígenos de Protozoários/imunologia , Eritrócitos/parasitologia , Imunoglobulina G/farmacologia , Merozoítos/efeitos dos fármacos , Plasmodium falciparum/efeitos dos fármacos , Anticorpos Antiprotozoários/imunologia , Antígenos de Protozoários/genética , Infecções Assintomáticas , Ensaio de Imunoadsorção Enzimática , Imunofluorescência , Humanos , Malária Falciparum/imunologia , Proteínas de Protozoários/genética , Tailândia
5.
Immunol Invest ; 48(1): 11-26, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30321079

RESUMO

Human γδ T lymphocytes play a role in the immune system defense against cancer. Their broad anti-cancer activity against different types of cancers makes them outstanding candidates for cancer immunotherapy. An issue of recent interest is whether their antigen presentation features are similar to mature dendritic cells. The antigen-presenting cell (APC)-like phenotype and function of γδ T lymphocytes have been confirmed in many clinical trials. In this study, to support the strong role played by Vγ9Vδ2 T cells against cancer, we provide evidence that Vγ9Vδ2 T cells activated with chronic myeloid leukemia (CML) cell lysate antigens can efficiently express an APC phenotype and function. Vγ9Vδ2 T cells derived from normal peripheral blood mononuclear cells were activated with tumor cell lysate, and the tumor-activated Vγ9Vδ2 T cells could recognize and kill CML through their cytotoxic activity. In conclusion, the Vγ9Vδ2 T cells activated by cancer cell lysate showed APC characteristics, and this may greatly increase interest in investigating their therapeutic potential in hematologic malignancies. Abbreviations: CML: chronic myeloid leukemia; APC: antigen-presenting cell; TCR: T cell receptor; MHC: major histocompatibility complex; N-BPs: nitrogen-containing bisphosphonates; IPP: isopentenyl pyrophosphate; PBMC: peripheral blood mononuclear cells; NKG2D: natural killer receptor group 2, member D; TRAIL: tumor necrosis factor-related apoptosis-inducing ligand.


Assuntos
Células Apresentadoras de Antígenos/imunologia , Vacinas Anticâncer/imunologia , Imunoterapia Adotiva/métodos , Leucemia Mielogênica Crônica BCR-ABL Positiva/terapia , Linfócitos T/imunologia , Apresentação de Antígeno , Células Apresentadoras de Antígenos/transplante , Antígenos de Neoplasias/imunologia , Diferenciação Celular , Linhagem Celular , Humanos , Leucemia Mielogênica Crônica BCR-ABL Positiva/imunologia , Leucócitos Mononucleares , Ativação Linfocitária , Receptores de Antígenos de Linfócitos T gama-delta/metabolismo , Linfócitos T/transplante
6.
Ann Transl Med ; 6(20): 406, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30498733

RESUMO

BACKGROUND: Circulating rare cells (CRCs) are benign or malignant minuscule events in the peripheral blood or other bodily fluids. The detection and quantification of certain CRC types is an invaluable or proposed candidate biomarker for diagnosis, prognosis and prediction of various pathological conditions. The list of CRC types and biomarker applicability thereof continues to expand along with improvements in cell selection technology. Past findings may suggest commonness of healthy donor peripheral blood circulating mature erythroblasts. This work suggests the occurrence of morphologically distinct bone marrow native circulating early erythroid precursors that we intend to add to the list of CRCs. METHODS: We tested 15 healthy individuals that varied in age and gender employing a negative cell selection assay based on magnetic bead technology to characterize healthy adult circulating CD45 negative cell events using cell surface markers CD71 and glycophorin-A. RESULTS: Positive events were detected and varied in cell and nuclear size ranging between 7.5 µm till 15 µm and 4.5 till 9.2 µm, respectively with distinct appearance under bright field microscope. Cell rarity increased with cell and nuclear size. Largest cells exceeded 13.5 µm in cell diameter and were found in 7 out of 15 donors. CONCLUSIONS: Circulating erythroid precursors occur at different stages of maturation and may be part of the benign CRC spectrum.

7.
RSC Adv ; 8(26): 14393-14400, 2018 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-35540746

RESUMO

γδ T cells play a significant role in protection against cancer. Purification of γδ T cells is needed for insight when studying their anti-cancer functionality and their utilization in adoptive cell therapy. To improve the purification of γδ T cells, in this work, a composite material based on magnetic nanoparticles was developed for purification of Vγ9Vδ2 T cells, the predominant subset of γδ T lymphocytes in human peripheral blood. The epoxy-functionalized magnetic poly(divinylbenzene-co-glycidyl methacrylate) particles (mPDGs) were bio-conjugated with anti-human Vδ2 antibody to provide specific recognition sites for T cell receptors of Vγ9Vδ2 T cells. Using fluorescence-activated cell sorting (FACS) analysis, separation of Vγ9Vδ2 T cells from peripheral blood mononuclear cells of healthy donors was confirmed with high purity [89.77% (range 87.00-91.80, n = 3)]. More interestingly, the immobilized particles did not affect the viability of purified cells as high cell viability was indicated (>90%). By combining the properties of magnetic nanoparticles with specific antibodies, these immobilized particles were shown to be used as a cell-friendly purification tool of Vγ9Vδ2 T lymphocytes without any limits for the further use of cells. The purified Vγ9Vδ2 T cells using the antibody-immobilized epoxy-functionalized mPDGs could be used directly without a detachment step for further cultivation and expansion. This highlights the advantages of this method in allowing the study of cell function and further investigation of such rare T cell populations in immunotherapy.

8.
Parasitol Int ; 67(2): 203-208, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29217416

RESUMO

The target molecules of antibodies against falciparum malaria remain largely unknown. Recently we have identified multiple proteins as targets of immunity against Plasmodium falciparum using African serum samples. To investigate whether potential targets of clinical immunity differ with transmission intensity, we assessed immune responses in residents of low malaria transmission region in Thailand. Malaria asymptomatic volunteers (Asy: n=19) and symptomatic patients (Sym: n=21) were enrolled into the study. Serum immunoreactivity to 186 wheat germ cell-free system (WGCFS)-synthesized recombinant P. falciparum asexual-blood stage proteins were determined by AlphaScreen, and subsequently compared between the study groups. Forty proteins were determined as immunoreactive with antibody responses to 35 proteins being higher in Asy group than in Sym group. Among the 35 proteins, antibodies to MSP3, MSPDBL1, RH2b, and MSP7 were significantly higher in Asy than Sym (unadjusted p<0.005) suggesting these antigens may have a protective role in clinical malaria. MSP3 reactivity remained significantly different between Asy and Sym groups even after multiple comparison adjustments (adjusted p=0.033). Interestingly, while our two preceding studies using African sera were conducted differently (e.g., cross-sectional vs. longitudinal design, observed clinical manifestation vs. functional activity), those studies similarly identified MSP3 and MSPDBL1 as potential targets of protective immunity. This study further provides a strong rationale for the application of WGCFS-based immunoprofiling to malaria vaccine candidate and biomarker discovery even in low or reduced malaria transmission settings.


Assuntos
Antígenos de Protozoários/imunologia , Malária Falciparum/epidemiologia , Malária Falciparum/transmissão , Plasmodium falciparum/química , Proteínas de Protozoários/imunologia , Proteínas de Protozoários/isolamento & purificação , Adolescente , Adulto , Antígenos de Protozoários/sangue , Antígenos de Protozoários/isolamento & purificação , Infecções Assintomáticas/epidemiologia , Criança , Feminino , Ensaios de Triagem em Larga Escala/métodos , Humanos , Malária Falciparum/sangue , Malária Falciparum/imunologia , Masculino , Proteínas de Membrana/sangue , Proteínas de Membrana/imunologia , Pessoa de Meia-Idade , Plasmodium falciparum/genética , Plasmodium falciparum/imunologia , Proteínas de Protozoários/sangue , Proteínas Recombinantes/imunologia , Tailândia/epidemiologia , Triticum/imunologia , Adulto Jovem
9.
PLoS One ; 12(3): e0172718, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28249043

RESUMO

In severe falciparum malaria cytoadherence of parasitised red blood cells (PRBCs) to vascular endothelium (causing sequestration) and to uninfected red cells (causing rosette formation) contribute to microcirculatory flow obstruction in vital organs. Heparin can reverse the underlying ligand-receptor interactions, but may increase the bleeding risks. As a heparin-derived polysaccharide, sevuparin has been designed to retain anti-adhesive properties, while the antithrombin-binding domains have been eliminated, substantially diminishing its anticoagulant activity. Sevuparin has been evaluated recently in patients with uncomplicated falciparum malaria, and is currently investigated in a clinical trial for sickle cell disease. The effects of sevuparin on rosette formation and cytoadherence of Plasmodium falciparum isolates from Thailand were investigated. Trophozoite stages of P. falciparum-infected RBCs (Pf-iRBCs) were cultured from 49 patients with malaria. Pf-iRBCs were treated with sevuparin at 37°C and assessed in rosetting and in cytoadhesion assays with human dermal microvascular endothelial cells (HDMECs) under static and flow conditions. The proportion of Pf-iRBCs forming rosettes ranged from 6.5% to 26.0% (median = 12.2%). Rosetting was dose dependently disrupted by sevuparin (50% disruption by 250 µg/mL). Overall 57% of P. falciparum isolates bound to HDMECs under static conditions; median (interquartile range) Pf-iRBC binding was 8.5 (3.0-38.0) Pf-iRBCs/1000 HDMECs. Sevuparin in concentrations ≥ 100 µg/mL inhibited cytoadherence. Sevuparin disrupts P. falciparum rosette formation in a dose dependent manner and inhibits cytoadherence to endothelial cells. The data support assessment of sevuparin as an adjunctive treatment to the standard therapy in severe falciparum malaria.


Assuntos
Células Endoteliais/metabolismo , Eritrócitos/parasitologia , Heparina/análogos & derivados , Malária Falciparum/metabolismo , Plasmodium falciparum/metabolismo , Trofozoítos/metabolismo , Adolescente , Adulto , Idoso , Adesão Celular/efeitos dos fármacos , Células Cultivadas , Eritrócitos/metabolismo , Feminino , Heparina/farmacologia , Humanos , Masculino , Pessoa de Meia-Idade , Formação de Roseta
10.
Malar J ; 16(1): 131, 2017 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-28347310

RESUMO

BACKGROUND: To date, human peripheral blood mononuclear cells (PBMCs) have been used mainly in immune stimulation assays and the interpretation of data can be influenced by the previous immunological history of donors and cross reactivity with other infectious agents. Resolving these limitations requires an alternative in vitro model to uncover the primary response profiles. METHODS: A novel in vitro model of mononuclear cells (MNCs) generated from haematopoietic stem cells (HSCs) was developed and these cells were then co-cultured with various antigens from Plasmodium falciparum and Plasmodium vivax to investigate the response of naïve immune cells to malaria antigens by flow cytometry. RESULTS: In vitro stimulation of naïve lymphocytes showed that CD4+ and CD8+ T lymphocytes were significantly reduced (P < 0.01) by exposure to lysates of infected erythrocytes or intact erythrocytes infected with P. falciparum. The depletion was associated with the expression of CD95 (Fas receptor) on the surface of T lymphocytes. Maturation of T lymphocytes was affected differently, showing elevated CD3+CD4+CD8+ and CD3+CD4-CD8- T lymphocytes after stimulation with cell lysates of P. falciparum and P. vivax, respectively. In addition, antigen presenting monocytes and dendritic cells derived from haematopoietic stem cells showed impaired HLA-DR expression as a consequence of exposure to different species of malaria parasites. CONCLUSION: These results suggest that naïve mononuclear cells differentiated in vitro from HSCs could provide a valid model for the assessment of immunity. P. falciparum and P. vivax malaria parasites could modulate various populations of immune cells starting from newly differentiated mononuclear cells.


Assuntos
Imunidade Celular , Leucócitos Mononucleares/imunologia , Malária Falciparum/imunologia , Malária Vivax/imunologia , Plasmodium falciparum/imunologia , Plasmodium vivax/imunologia , Células-Tronco Hematopoéticas/fisiologia , Humanos , Malária Falciparum/parasitologia , Malária Vivax/parasitologia
11.
Talanta ; 164: 645-650, 2017 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-28107985

RESUMO

The highly sensitive and specific detection of Pfg377 gene of Plasmodium falciparum gametocyte using Magnetic Nanoparticles PCR Enzyme-Linked Gene Assay (MELGA) was successfully developed. The MELGA included amplification of the Pfg377 gene by polymerase chain reaction (PCR) using magnetic nanoparticles (MNPs)-conjugated forward primer and biotinylated reverse primer, followed by post-analytical process using horseradish peroxidase (HRP)-conjugated streptavidin (SA). The complexes of MELGA product were incubated with the peroxidase substrate and hydrogen peroxide to produce the signal for colorimetric measurement. Altogether, the MELGA technique provided a highly sensitive and specific detection at 1 P. falciparum gametocyte/µL, which was more efficient than that of microscopic examination and rapid diagnostic tests (RDTs). Additionally, the MELGA could detect target gene at femtogram level, which was greater sensitive than the conventional PCR, nested PCR and loop-mediated isothermal amplification (LAMP). The MELGA technique could become a novel and practical method that overcome limitation of traditional gametocyte detection.


Assuntos
Técnicas Biossensoriais/métodos , Peroxidase do Rábano Silvestre/metabolismo , Limite de Detecção , Imãs/química , Nanopartículas/química , Plasmodium falciparum/citologia , Plasmodium falciparum/genética , Primers do DNA/genética , Genes de Protozoários/genética
12.
J Transl Med ; 15(1): 6, 2017 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-28057026

RESUMO

BACKGROUND: Rare nucleated CD45 negative cells in peripheral blood may be malignant such as circulating tumor cells. Untouched isolation thereof by depletion of normal is favored yet still technological challenging. We optimized and evaluated a novel magnetic bead-based negative selection approach for enhanced enrichment of rare peripheral blood nucleated CD45 negative cells and investigated the problem of rare cell contamination during phlebotomy. METHODS: Firstly, the performance of the magnetic cell separation system was assessed using leukocytes and cultivated fibroblast cells in regard to depletion efficiency and the loss of cells of interest. Secondly, a negative selection assay was optimized for high performance, simplicity and cost efficiency. The negative selection assay consisted of; a RBC lysis step, two depletion cycles comprising direct magnetically labelling of leukocytes using anti-CD45 magnetic beads followed by magnetic capture of leukocytes using a duopole permanent magnet. Thirdly, assay evaluation was aligned to conditions of rare cell frequencies and comprised cell spike recovery, cell viability and proliferation, and CD45 negative cell detection. Additionally, the problem of CD45 negative cell contamination during phlebotomy was investigated. RESULTS: The depletion factor and recovery of the negative selection assay measured at most 1600-fold and 96%, respectively, leaving at best 1.5 × 104 leukocytes unseparated and took 35 min. The cell viability was negatively affected by chemical RBC lysis. Proliferation of 100 spiked ovarian cancer cells in culture measured 37% against a positive control. Healthy donor testing revealed findings of nucleated CD45 negative cells ranging from 1 to 22 cells /2.5 × 107 leukocytes or 3.5 mL whole blood in 89% (23/26) of the samples. CONCLUSION: Our assay facilitates high performance at shortest assay time. The enrichment assay itself causes minor harm to cells and allows proliferation. Our findings suggest that rare cell contamination is unavoidable. An unexpected high variety of CD45 negative cells have been detected. It is hypothesized that a rare cell profile may translate into tumor marker independent screening.


Assuntos
Separação Celular/métodos , Separação Celular/tendências , Animais , Bioensaio , Linhagem Celular , Proliferação de Células , Sobrevivência Celular , Estudos de Viabilidade , Citometria de Fluxo , Humanos , Processamento de Imagem Assistida por Computador , Antígenos Comuns de Leucócito/metabolismo , Camundongos
13.
FEMS Microbiol Lett ; 363(15)2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27324398

RESUMO

Burkholderia pseudomallei is an intracellular Gram-negative bacterial pathogen and the causative agent of melioidosis, a widespread disease in Southeast Asia. Reactive nitrogen, in an intermediate form of nitric oxide (NO), is one of the first lines of defense used by host cells to eliminate intracellular pathogens, through the stimulation of inducible nitric oxide synthase (iNOS). Studies in phagocytotic cells have shown that the iNOS response is muted in B. pseudomallei infection, and implicated the rpoS sigma factor as a key regulatory factor mediating suppression. The liver is a main visceral organ affected by B. pseudomallei, and there is little knowledge about the interaction of liver cells and B. pseudomallei This study investigated the induction of iNOS, as well as autophagic flux and light-chain 3 (LC3) localization in human liver (HC04) cells in response to infection with B. pseudomallei and its rpoS deficient mutant. Results showed that the rpoS mutant was unable to suppress iNOS induction and that the mutant showed less induction of autophagy and lower co-localization with LC3, and this was coupled with a lower intracellular growth rate. Combining these results suggest that B. pseudomallei rpoS is an important factor in establishing infection in liver cells.


Assuntos
Proteínas de Bactérias/metabolismo , Burkholderia pseudomallei/genética , Hepatócitos/enzimologia , Hepatócitos/microbiologia , Interações Hospedeiro-Patógeno , Óxido Nítrico Sintase Tipo II/biossíntese , Fator sigma/metabolismo , Autofagia , Proteínas de Bactérias/genética , Burkholderia pseudomallei/crescimento & desenvolvimento , Burkholderia pseudomallei/metabolismo , Linhagem Celular , Indução Enzimática , Humanos , Melioidose/microbiologia , Viabilidade Microbiana , Proteínas Associadas aos Microtúbulos/metabolismo , Mutação , Óxido Nítrico Sintase Tipo II/genética , Fator sigma/genética
14.
EXCLI J ; 14: 926-34, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26713085

RESUMO

The mechanisms of cellular and humoral immune responses against P. vivax parasite remain poorly understood. Several malaria immunological studies have been conducted in endemic regions where both P. falciparum and P. vivax parasites co-exist. In this study, a comparative analysis of immunity to Plasmodium vivax antigens in different geography and incidence of Plasmodium spp. infection was performed. We characterised antibodies against two P. vivax antigens, PvMSP-1 and PvAMA-1, and the cross-reactivity between these antigens using plasma from acute malaria infected patients living in the central region of China and in the western border of Thailand. P. vivax endemicity is found in central China whereas both P. vivax and P. falciparum are endemic in Thailand. There was an increased level of anti-PvMSP-1/anti-PvAMA-1 in both populations. An elevated level of antibodies to total P. vivax proteins and low level of antibodies to total P. falciparum proteins was found in acute P. vivax infected Chinese, suggesting antibody cross-reactivity between the two species. P. vivax infected Thai patients had both anti-P. vivax and anti-P. falciparum antibodies as expected since both species are present in Thailand. More information on humoral and cell mediated immunity during acute P. vivax-infection in the area where only single P. vivax species existed is of great interest in the relation of building up anti-disease severity caused by P. falciparum. This knowledge will support vaccine development in the future.

15.
Malar J ; 14: 138, 2015 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-25889165

RESUMO

BACKGROUND: The underlying causes of severe malarial anaemia are multifactorial. In previously reports, Plasmodium vivax was found to be able to directly inhibited erythroid cell proliferation and differentiation. The molecular mechanisms underlying the suppression of erythropoiesis by P. vivax are remarkably complex and remain unclear. In this study, a phosphoproteomic approach was performed to dissect the molecular mechanism of phosphoprotein regulation, which is involved in the inhibitory effect of parasites on erythroid cell development. METHODS: This study describes the first comparative phosphoproteome analysis of growing erythroid cells (gECs), derived from human haematopoietic stem cells, exposed to lysates of infected erythrocytes (IE)/uninfected erythrocytes (UE) for 24, 48 and 72 h. This study utilized IMAC phosphoprotein isolation directly coupled with LC MS/MS analysis. RESULTS: Lysed IE significantly inhibited gEC growth at 48 and 72 h and cell division resulting in the accumulation of cells in G0 phase. The relative levels of forty four phosphoproteins were determined from gECs exposed to IE/UE for 24-72 h and compared with the media control using the label-free quantitation technique. Interestingly, the levels of three phosphoproteins: ezrin, alpha actinin-1, and Rho kinase were significantly (p < 0.05) altered. These proteins display interactions and are involved in the regulation of the cellular cytoskeleton. Particularly affected was ezrin (phosphorylated at Thr567), which is normally localized to gEC cell extension peripheral processes. Following exposure to IE, for 48-72 h, the ezrin signal intensity was weak or absent. This result suggests that phospho-ezrin is important for actin cytoskeleton regulation during erythroid cell growth and division. CONCLUSIONS: These findings suggest that parasite proteins are able to inhibit erythroid cell growth by down-regulation of ezrin phosphorylation, leading to ineffective erythropoiesis ultimately resulting in severe malarial anaemia. A better understanding of the mechanisms of ineffective erythropoiesis may be beneficial in the development of therapeutic strategies to prevent severe malarial anaemia.


Assuntos
Proteínas do Citoesqueleto/metabolismo , Células Eritroides/parasitologia , Interações Hospedeiro-Patógeno , Plasmodium vivax/fisiologia , Processamento de Proteína Pós-Traducional , Proliferação de Células , Cromatografia Líquida , Células Eritroides/química , Humanos , Fosforilação , Proteoma/análise , Espectrometria de Massas em Tandem , Fatores de Tempo
16.
EXCLI J ; 14: 1031-9, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26933404

RESUMO

Hematopoietic stem cells (HSC) from cord blood are potentially high sources for transplantation due to their low immunogenicity and the presence of the multipotent cells. These cells are capable of differentiating to produce various lineages of blood cells under specific conditions. We have enriched highly purified CD34(+) cells from cord blood, determined in vitro growth of the cells in culture systems in the absence (condition A) or presence of GM-CSF and G-CSF (condition B), and determined the profile of immune cells during the period of cultivation by using flow cytometry. PhytohemagglutininA (PHA) was used as a mitogen to stimulate T lymphocytes derived from hematopoietic stem cells. GM-CSF and G-CSF prolonged the survival of the growing cells and also maintained expansion of cells in blastic stage. By day 12 of cultivation, when cell numbers peaked, various types of immune cells had appeared (CD14(+) cells, CD40(+)HLA-DR(+) cells, CD3(+)CD56(+) cells, CD19(+) cells, CD3(+)CD4(+) cells, CD3(+)CD8(+)cells and CD3-CD56(+)). A significantly higher percentage of monocytes (p = 0.002) were observed under culture with GM-CSF, G-CSF when compared with culture without GM-CSF, G-CSF. In addition, T lymphocytes derived from HSC responded to 50 µg/ml of PHA. This is the first report showing the complete differentiation and proliferation of immune cells derived from CD34(+) HSC under in vitro culture conditions. Lymphocytes, monocytes, dendritic cells and polymorph nuclear cells derived from HSC in vitro are unique, and thus may benefit various studies such as innate immunity and pathophysiology of immune disorders.

17.
Med Microbiol Immunol ; 203(6): 383-93, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24985035

RESUMO

The digestive vacuole (DV) of Plasmodium falciparum, which is released into the bloodstream upon rupture of each parasitized red blood cell (RBC), was recently discovered to activate the alternative complement pathway. In the present work, we show that C3- and C5-convertases assembling on the parasitic organelle are able to provoke deposition of activated C3 and C5b-9 on non-infected bystander erythrocytes. Direct contact of DVs with cells is mandatory for the effect, and bystander complement deposition occurs focally, possibly at the sites of contact. Complement opsonization promotes protracted erythrophagocytosis by human macrophages, an effect that is magnified when ring-stage infected RBCs with reduced CD55 and CD59, or paroxysmal nocturnal hemoglobinuria (PNH)-RBCs lacking these complement inhibitors are employed as targets. Bystander attack can also directly induce lysis of PNH-RBCs. Direct evidence for complement activation and bystander attack mediated by DVs was obtained through immunohistochemical analyses of brain paraffin sections from autopsies of patients who had died of cerebral malaria. C3d and the assembled C5b-9 complex could be detected in all sections, colocalizing with and often extending locally beyond massive accumulations of DVs that were identified under polarized light. This is the first demonstration that a complement-activating particle can mediate opsonization of bystander cells to promote their antibody-independent phagocytosis. The phenomenon may act in concert with other pathomechanisms to promote the development of anemia in patients with severe malaria.


Assuntos
Efeito Espectador , Proteínas do Sistema Complemento/imunologia , Proteínas do Sistema Complemento/metabolismo , Eritrócitos/imunologia , Fagocitose , Plasmodium falciparum/imunologia , Vacúolos/imunologia , Encéfalo/patologia , Eritrócitos/patologia , Humanos , Imuno-Histoquímica
18.
Int J Mol Sci ; 15(5): 8821-34, 2014 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-24852940

RESUMO

Specific labelling of target cell surfaces using antibody-conjugated paramagnetic nanobeads is essential for efficient magnetic cell separation. However, studies examining parameters determining the kinetics of bead-cell binding are scarce. The present study determines the binding rates for specific and unspecific binding of 150 nm paramagnetic nanobeads to highly purified target and non-target cells. Beads bound to cells were enumerated spectrophotometrically. Results show that the initial bead-cell binding rate and saturation levels depend on initial bead concentration and fit curves of the form A(1 - exp(-kt)). Unspecific binding within conventional experimental time-spans (up to 60 min) was not detectable photometrically. For CD3-positive cells, the probability of specific binding was found to be around 80 times larger than that of unspecific binding.


Assuntos
Anticorpos/química , Nanopartículas de Magnetita/química , Anticorpos/imunologia , Complexo CD3/imunologia , Complexo CD3/metabolismo , Citometria de Fluxo , Humanos , Cinética , Leucócitos Mononucleares/citologia , Leucócitos Mononucleares/imunologia , Leucócitos Mononucleares/metabolismo , Receptores de Lipopolissacarídeos/imunologia , Receptores de Lipopolissacarídeos/metabolismo , Tamanho da Partícula , Espectrofotometria
19.
J Biomed Nanotechnol ; 9(10): 1768-75, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24015506

RESUMO

The simple and less expensive technique based on magnetic nanoparticles (MNPs) was developed for separation of malaria parasites containing specific antigens. The carboxylated MNPs were chemically bound with anti-P. falciparum IgG antibodies (Ab-MNPs) purified from the plasma of malaria patients and then used for removal of P. falciparum malaria-infected erythrocytes from other non-infected blood cells in malaria culture at a given percent parasitemia. The results from optical microscope showed that all blood stages parasites, i.e., ring, trophozoite and schizont, could be separated from other blood components with high purity (> or = 95%) and yield of 33.5% (the early stages of ring and trophozoite:the schizont stage were 1:1.34). Highly specific interaction between Ab-MNPs and the P. falciparum malaria infected erythrocytes was confirmed by scanning electron microscope. When compared to the centrifugation with Percoll gradient and depletion by sorbitol lysis which are specific to the mature and the ring stages, respectively, our technique would be more useful for production of high quality of parasites to use in malaria pathogenesis or immunological studies, and in detection techniques.


Assuntos
Anticorpos Antiprotozoários/imunologia , Eritrócitos/parasitologia , Separação Imunomagnética/métodos , Nanopartículas de Magnetita/química , Plasmodium falciparum/imunologia , Plasmodium falciparum/isolamento & purificação , Células Cultivadas , Humanos
20.
Anticancer Res ; 32(12): 5337-42, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23225435

RESUMO

BACKGROUND: Tumor hypoxia, a common pathophysiological feature of solid tumors, contributes to drug resistance and treatment failure. Here, we demonstrate that hypoxia in HepG2 cells induces resistance towards cytotoxicity of curcumin, a promising anticancer agent. MATERIALS AND METHODS: The number of surviving cells after exposure to chemotherapeutic drugs under normoxia (ambient O(2)) and hypoxia (1% O(2)) was determined by crystal violet staining. The expression levels of drug transporter genes were analyzed by quantitative real-time reverse transcription-polymerase chain reaction. RESULTS: Increased resistance to curcumin, as well as to etoposide and doxorubicin, was observed in HepG2 cells under hypoxia. Gene expression analysis revealed that hypoxia increased the expression of ATP-binding cassette (ABC) drug transporter genes, sub-family C including ABCC1, ABCC2, and ABCC3, by more than two-fold. While expression of ABC drug transporter genes sub-family B member 1 and sub-family G member 2 (ABCB2/P-gp and ABCG2, respectively) did not change significantly. Both inhibitors of ABCC1/ABCC2 and depletion of intracellular glutathione levels were able to reverse hypoxia-induced curcumin resistance. CONCLUSION: ABCC1 and ABCC2 play an important role in hypoxia-induced curcumin resistance in human hepatocellular carcinoma.


Assuntos
Antineoplásicos/farmacologia , Curcumina/farmacologia , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/metabolismo , Proteínas Associadas à Resistência a Múltiplos Medicamentos/antagonistas & inibidores , Proteínas Associadas à Resistência a Múltiplos Medicamentos/metabolismo , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/metabolismo , Hipóxia Celular/fisiologia , Resistencia a Medicamentos Antineoplásicos , Glutationa/biossíntese , Células Hep G2 , Humanos , Proteína 2 Associada à Farmacorresistência Múltipla
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...