Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 16(19)2023 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-37834524

RESUMO

The main objective of this study was to develop a high-entropy alloy (HEA) derived from the CoxCrFeNiTi HEA system (x = 0.5, 1) for protective coatings using the magnetron sputtering method. In order to produce the high-entropy alloy targets required for the magnetron sputtering process, mechanically alloyed metallic powders were consolidated via spark plasma sintering (SPS). The microstructural analysis results of the HEA mixture presented morphology changes after 30 h of alloying, with the particles presenting uniform polygonal shapes and dimensions. Subsequently, 316L stainless steel (SS) specimens were coated via magnetron sputtering, comparing their composition with that of the sputtering targets used for deposition to establish stoichiometry. Microstructural analyses of the SPSed HEAs revealed no defects and indicated a uniform elemental distribution across the surface. Furthermore, the CoCrFeNiTi equiatomic alloy exhibited a nearly stoichiometric composition, both in the coating and the sputtering target. The XRD analysis results indicated that amorphous coatings were obtained for both Co0.5CrFeNiTi and the CoCrFeNiTi HEA, and nanoindentation tests indicated that the CoCrFeNiTi HEA coating presented a hardness of 596 ± 22 HV, compared to the 570 ± 19 HV measured for Co0.5CrFeNiTi, suggesting an improved wear resistance.

2.
Materials (Basel) ; 15(7)2022 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-35407989

RESUMO

The design of hydrogel networks with tuned properties is essential for new innovative biomedical materials. Herein, poly(vinyl alcohol) and xanthan gum were used to develop hydrogels by the freeze/thaw cycles method in the presence of oxalic acid as a crosslinker. The structure and morphology of the obtained hydrogels were investigated by means of scanning electron microscopy (SEM), Fourier transform infrared (FTIR) spectroscopy, and swelling behavior. The SEM analysis revealed that the surface morphology was mostly affected by the blending ratio between the two components, namely, poly(vinyl alcohol) and xanthan gum. From the swelling study, it was observed that the presence of oxalic acid influenced the hydrophilicity of blends. The hydrogels based on poly(vinyl alcohol) without xanthan gum led to structures with a smaller pore diameter, a lower swelling degree in pH 7.4 buffer solution, and a higher elastic modulus. The antimicrobial activity of the prepared hydrogels was tested and the results showed that the hydrogels conferred antibacterial activity against Gram positive bacteria (Staphylococcus aureus 25923 ATCC) and Gram negative bacteria (Escherichia coli 25922 ATCC).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...