Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Genome Biol ; 24(1): 284, 2023 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-38066546

RESUMO

BACKGROUND: Point mutations in histone variant H3.3 (H3.3K27M, H3.3G34R) and the H3.3-specific ATRX/DAXX chaperone complex are frequent events in pediatric gliomas. These H3.3 point mutations affect many chromatin modifications but the exact oncogenic mechanisms are currently unclear. Histone H3.3 is known to localize to nuclear compartments known as promyelocytic leukemia (PML) nuclear bodies, which are frequently mutated and confirmed as oncogenic drivers in acute promyelocytic leukemia. RESULTS: We find that the pediatric glioma-associated H3.3 point mutations disrupt the formation of PML nuclear bodies and this prevents differentiation down glial lineages. Similar to leukemias driven by PML mutations, H3.3-mutated glioma cells are sensitive to drugs that target PML bodies. We also find that point mutations in IDH1/2-which are common events in adult gliomas and myeloid leukemias-also disrupt the formation of PML bodies. CONCLUSIONS: We identify PML as a contributor to oncogenesis in a subset of gliomas and show that targeting PML bodies is effective in treating these H3.3-mutated pediatric gliomas.


Assuntos
Neoplasias Encefálicas , Glioma , Histonas , Adulto , Criança , Humanos , Neoplasias Encefálicas/genética , Glioma/genética , Histonas/genética , Mutação , Corpos Nucleares da Leucemia Promielocítica/genética , Corpos Nucleares da Leucemia Promielocítica/patologia
2.
Nucleic Acids Res ; 50(8): 4500-4514, 2022 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-35451487

RESUMO

Histone H3.3 is an H3 variant which differs from the canonical H3.1/2 at four residues, including a serine residue at position 31 which is evolutionarily conserved. The H3.3 S31 residue is phosphorylated (H3.3 S31Ph) at heterochromatin regions including telomeres and pericentric repeats. However, the role of H3.3 S31Ph in these regions remains unknown. In this study, we find that H3.3 S31Ph regulates heterochromatin accessibility at telomeres during replication through regulation of H3K9/K36 histone demethylase KDM4B. In mouse embryonic stem (ES) cells, substitution of S31 with an alanine residue (H3.3 A31 -phosphorylation null mutant) results in increased KDM4B activity that removes H3K9me3 from telomeres. In contrast, substitution with a glutamic acid (H3.3 E31, mimics S31 phosphorylation) inhibits KDM4B, leading to increased H3K9me3 and DNA damage at telomeres. H3.3 E31 expression also increases damage at other heterochromatin regions including the pericentric heterochromatin and Y chromosome-specific satellite DNA repeats. We propose that H3.3 S31Ph regulation of KDM4B is required to control heterochromatin accessibility of repetitive DNA and preserve chromatin integrity.


Assuntos
Heterocromatina , Histonas , Animais , Camundongos , Histonas/genética , Histonas/metabolismo , Heterocromatina/genética , Histona Desmetilases/metabolismo , Fosforilação , Montagem e Desmontagem da Cromatina
3.
Nat Commun ; 9(1): 3309, 2018 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-30120252

RESUMO

Nuclear actin and actin-related proteins (Arps) are key components of chromatin remodeling and modifying complexes. Although Arps are essential for the functions of chromatin remodelers, their specific roles and mechanisms are unclear. Here we define the nucleosome binding interfaces and functions of the evolutionarily conserved Arps in the yeast INO80 chromatin remodeling complex. We show that the N-terminus of Arp8, C-terminus of Arp4 and the HSA domain of Ino80 bind extranucleosomal DNA 37-51 base pairs from the edge of nucleosomes and function as a DNA-length sensor that regulates nucleosome sliding by INO80. Disruption of Arp8 and Arp4 binding to DNA uncouples ATP hydrolysis from nucleosome mobilization by disengaging Arp5 from the acidic patch on histone H2A-H2B and the Ino80-ATPase domain from the Super-helical Location (SHL) -6 of nucleosomes. Our data suggest a functional interplay between INO80's Arp8-Arp4-actin and Arp5 modules in sensing the DNA length separating nucleosomes and regulating nucleosome positioning.


Assuntos
Actinas/metabolismo , Montagem e Desmontagem da Cromatina , DNA Fúngico/metabolismo , Proteínas dos Microfilamentos/metabolismo , Proteínas Nucleares/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Actinas/química , Sítios de Ligação , Proteínas dos Microfilamentos/química , Proteínas Nucleares/química , Nucleossomos/metabolismo , Ligação Proteica , Domínios Proteicos , Proteínas de Saccharomyces cerevisiae/química
4.
Nat Commun ; 9(1): 3142, 2018 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-30087349

RESUMO

An array of oncogenic histone point mutations have been identified across a number of different cancer studies. It has been suggested that some of these mutant histones can exert their effects by inhibiting epigenetic writers. Here, we report that the H3.3 G34R (glycine to arginine) substitution mutation, found in paediatric gliomas, causes widespread changes in H3K9me3 and H3K36me3 by interfering with the KDM4 family of K9/K36 demethylases. Expression of a targeted single-copy of H3.3 G34R at endogenous levels induced chromatin alterations that were comparable to a KDM4 A/B/C triple-knockout. We find that H3.3 G34R preferentially binds KDM4 while simultaneously inhibiting its enzymatic activity, demonstrating that histone mutations can act through inhibition of epigenetic erasers. These results suggest that histone point mutations can exert their effects through interactions with a range of epigenetic readers, writers and erasers.


Assuntos
Neoplasias Encefálicas/metabolismo , Cromatina/química , Glioblastoma/metabolismo , Histonas/metabolismo , Mutação , Mutação Puntual , Animais , Arginina/química , Biotinilação , Neoplasias Encefálicas/genética , Criança , Modelos Animais de Doenças , Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/metabolismo , Epigênese Genética , Regulação Neoplásica da Expressão Gênica , Glioblastoma/genética , Glicina/química , Histonas/genética , Humanos , Camundongos , Ligação Proteica , Análise de Sequência de RNA , Transgenes
5.
Proc Natl Acad Sci U S A ; 115(18): 4737-4742, 2018 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-29669917

RESUMO

ATRX (alpha thalassemia/mental retardation X-linked) complexes with DAXX to deposit histone variant H3.3 into repetitive heterochromatin. Recent genome sequencing studies in cancers have revealed mutations in ATRX and their association with ALT (alternative lengthening of telomeres) activation. Here we report depletion of ATRX in mouse ES cells leads to selective loss in ribosomal RNA gene (rDNA) copy number. Supporting this, ATRX-mutated human ALT-positive tumors also show a substantially lower rDNA copy than ALT-negative tumors. Further investigation shows that the rDNA copy loss and repeat instability are caused by a disruption in H3.3 deposition and thus a failure in heterochromatin formation at rDNA repeats in the absence of ATRX. We also find that ATRX-depleted cells are reduced in ribosomal RNA transcription output and show increased sensitivity to RNA polymerase I (Pol I) transcription inhibitor CX5461. In addition, human ALT-positive cancer cell lines are also more sensitive to CX5461 treatment. Our study provides insights into the contribution of ATRX loss of function to tumorigenesis through the loss of rDNA stability and suggests the therapeutic potential of targeting Pol I transcription in ALT cancers.


Assuntos
DNA de Neoplasias/metabolismo , DNA Ribossômico/metabolismo , Dosagem de Genes , Mutação , Proteínas de Neoplasias/metabolismo , Neoplasias/metabolismo , Proteína Nuclear Ligada ao X/metabolismo , Benzotiazóis/farmacologia , Linhagem Celular Tumoral , DNA de Neoplasias/genética , DNA Ribossômico/genética , Instabilidade Genômica , Humanos , Naftiridinas/farmacologia , Proteínas de Neoplasias/genética , Neoplasias/genética , Neoplasias/patologia , RNA Polimerase I/antagonistas & inibidores , RNA Polimerase I/genética , RNA Polimerase I/metabolismo , Transcrição Gênica/efeitos dos fármacos , Transcrição Gênica/genética , Proteína Nuclear Ligada ao X/genética
6.
Nucleic Acids Res ; 45(21): 12340-12353, 2017 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-29040668

RESUMO

AURKB (Aurora Kinase B) is a serine/threonine kinase better known for its role at the mitotic kinetochore during chromosome segregation. Here, we demonstrate that AURKB localizes to the telomeres in mouse embryonic stem cells, where it interacts with the essential telomere protein TERF1. Loss of AURKB function affects TERF1 telomere binding and results in aberrant telomere structure. In vitro kinase experiments successfully identified Serine 404 on TERF1 as a putative AURKB target site. Importantly, in vivo overexpression of S404-TERF1 mutants results in fragile telomere formation. These findings demonstrate that AURKB is an important regulator of telomere structural integrity.


Assuntos
Aurora Quinase B/metabolismo , Telômero/enzimologia , Proteína 1 de Ligação a Repetições Teloméricas/metabolismo , Animais , Aurora Quinase B/fisiologia , Linhagem Celular , Células-Tronco Embrionárias/enzimologia , Humanos , Interfase/genética , Camundongos , Mitose/genética , Mutação , Ligação Proteica , Telômero/ultraestrutura , Proteína 1 de Ligação a Repetições Teloméricas/química , Proteína 1 de Ligação a Repetições Teloméricas/genética
7.
Nat Commun ; 8: 15616, 2017 06 12.
Artigo em Inglês | MEDLINE | ID: mdl-28604691

RESUMO

ATP-dependent chromatin remodellers modulate nucleosome dynamics by mobilizing or disassembling nucleosomes, as well as altering nucleosome composition. These chromatin remodellers generally function by translocating along nucleosomal DNA at the H3-H4 interface of nucleosomes. Here we show that, unlike other remodellers, INO80 translocates along DNA at the H2A-H2B interface of nucleosomes and persistently displaces DNA from the surface of H2A-H2B. DNA translocation and DNA torsional strain created near the entry site of nucleosomes by INO80 promotes both the mobilization of nucleosomes and the selective exchange of H2A.Z-H2B dimers out of nucleosomes and replacement by H2A-H2B dimers without any additional histone chaperones. We find that INO80 translocates and mobilizes H2A.Z-containing nucleosomes more efficiently than those containing H2A, partially accounting for the preference of INO80 to replace H2A.Z with H2A. Our data suggest that INO80 has a mechanism for dimer exchange that is distinct from other chromatin remodellers including its paralogue SWR1.


Assuntos
Adenosina Trifosfatases/genética , Montagem e Desmontagem da Cromatina/genética , DNA Fúngico/genética , Histonas/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Adenosina Trifosfatases/metabolismo , Cromatina/metabolismo , Saccharomyces cerevisiae/metabolismo
8.
Nucleic Acids Res ; 43(21): 10227-37, 2015 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-26304540

RESUMO

In addition to being a hallmark at active genes, histone variant H3.3 is deposited by ATRX at repressive chromatin regions, including the telomeres. It is unclear how H3.3 promotes heterochromatin assembly. We show that H3.3 is targeted for K9 trimethylation to establish a heterochromatic state enriched in trimethylated H3.3K9 at telomeres. In H3f3a(-/-) and H3f3b(-/-) mouse embryonic stem cells (ESCs), H3.3 deficiency results in reduced levels of H3K9me3, H4K20me3 and ATRX at telomeres. The H3f3b(-/-) cells show increased levels of telomeric damage and sister chromatid exchange (t-SCE) activity when telomeres are compromised by treatment with a G-quadruplex (G4) DNA binding ligand or by ASF1 depletion. Overexpression of wild-type H3.3 (but not a H3.3K9 mutant) in H3f3b(-/-) cells increases H3K9 trimethylation level at telomeres and represses t-SCE activity induced by a G4 ligand. This study demonstrates the importance of H3.3K9 trimethylation in heterochromatin formation at telomeres. It provides insights into H3.3 function in maintaining integrity of mammalian constitutive heterochromatin, adding to its role in mediating transcription memory in the genome.


Assuntos
Heterocromatina/metabolismo , Código das Histonas , Histonas/metabolismo , Lisina/metabolismo , Telômero/metabolismo , Animais , Células Cultivadas , Dano ao DNA , Deleção de Genes , Histonas/química , Histonas/genética , Metilação , Camundongos , Troca de Cromátide Irmã , Transcrição Gênica
9.
Nucleic Acids Res ; 43(5): 2603-14, 2015 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-25690891

RESUMO

Human ALT cancers show high mutation rates in ATRX and DAXX. Although it is well known that the absence of ATRX/DAXX disrupts H3.3 deposition at heterochromatin, its impact on H3.3 deposition and post-translational modification in the global genome remains unclear. Here, we explore the dynamics of phosphorylated H3.3 serine 31 (H3.3S31ph) in human ALT cancer cells. While H3.3S31ph is found only at pericentric satellite DNA repeats during mitosis in most somatic human cells, a high level of H3.3S31ph is detected on the entire chromosome in ALT cells, attributable to an elevated CHK1 activity in these cells. Drug inhibition of CHK1 activity during mitosis and expression of mutant H3.3S31A in these ALT cells result in a decrease in H3.3S31ph levels accompanied with increased levels of phosphorylated H2AX serine 139 on chromosome arms and at the telomeres. Furthermore, the inhibition of CHK1 activity in these cells also reduces cell viability. Our findings suggest a novel role of CHK1 as an H3.3S31 kinase, and that CHK1-mediated H3.3S31ph plays an important role in the maintenance of chromatin integrity and cell survival in ALT cancer cells.


Assuntos
Montagem e Desmontagem da Cromatina , Cromatina/metabolismo , Histonas/metabolismo , Proteínas Quinases/metabolismo , Western Blotting , Linhagem Celular Transformada , Linhagem Celular Tumoral , Sobrevivência Celular/genética , Quinase 1 do Ponto de Checagem , Cromatina/genética , DNA Helicases/genética , DNA Helicases/metabolismo , Células HT29 , Células HeLa , Histonas/genética , Humanos , Microscopia de Fluorescência , Mutação , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/patologia , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Fosforilação , Proteínas Quinases/genética , Interferência de RNA , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Serina/genética , Serina/metabolismo , Telômero/genética , Telômero/metabolismo , Proteína Nuclear Ligada ao X
10.
Genome Res ; 25(2): 213-25, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25373146

RESUMO

Mitosis entails global alterations to chromosome structure and nuclear architecture, concomitant with transient silencing of transcription. How cells transmit transcriptional states through mitosis remains incompletely understood. While many nuclear factors dissociate from mitotic chromosomes, the observation that certain nuclear factors and chromatin features remain associated with individual loci during mitosis originated the hypothesis that such mitotically retained molecular signatures could provide transcriptional memory through mitosis. To understand the role of chromatin structure in mitotic memory, we performed the first genome-wide comparison of DNase I sensitivity of chromatin in mitosis and interphase, using a murine erythroblast model. Despite chromosome condensation during mitosis visible by microscopy, the landscape of chromatin accessibility at the macromolecular level is largely unaltered. However, mitotic chromatin accessibility is locally dynamic, with individual loci maintaining none, some, or all of their interphase accessibility. Mitotic reduction in accessibility occurs primarily within narrow, highly DNase hypersensitive sites that frequently coincide with transcription factor binding sites, whereas broader domains of moderate accessibility tend to be more stable. In mitosis, proximal promoters generally maintain their accessibility more strongly, whereas distal regulatory elements tend to lose accessibility. Large domains of DNA hypomethylation mark a subset of promoters that retain accessibility during mitosis and across many cell types in interphase. Erythroid transcription factor GATA1 exerts site-specific changes in interphase accessibility that are most pronounced at distal regulatory elements, but has little influence on mitotic accessibility. We conclude that features of open chromatin are remarkably stable through mitosis, but are modulated at the level of individual genes and regulatory elements.


Assuntos
Montagem e Desmontagem da Cromatina , Cromossomos , Genoma , Mitose/genética , Animais , Sítios de Ligação , Ciclo Celular/genética , Diferenciação Celular/genética , Imunoprecipitação da Cromatina , Biologia Computacional , Metilação de DNA , Desoxirribonuclease I/metabolismo , Células Eritroides/citologia , Células Eritroides/metabolismo , Fator de Transcrição GATA1/metabolismo , Sequenciamento de Nucleotídeos em Larga Escala , Interfase/genética , Camundongos , Mitose/efeitos dos fármacos , Regiões Promotoras Genéticas , Ligação Proteica , Sequências Reguladoras de Ácido Nucleico , Fatores de Transcrição/metabolismo , Transcrição Gênica
11.
Cell ; 150(4): 725-37, 2012 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-22901805

RESUMO

Tissue-specific transcription patterns are preserved throughout cell divisions to maintain lineage fidelity. We investigated whether transcription factor GATA1 plays a role in transmitting hematopoietic gene expression programs through mitosis when transcription is transiently silenced. Live-cell imaging revealed that a fraction of GATA1 is retained focally within mitotic chromatin. ChIP-seq of highly purified mitotic cells uncovered that key hematopoietic regulatory genes are occupied by GATA1 in mitosis. The GATA1 coregulators FOG1 and TAL1 dissociate from mitotic chromatin, suggesting that GATA1 functions as platform for their postmitotic recruitment. Mitotic GATA1 target genes tend to reactivate more rapidly upon entry into G1 than genes from which GATA1 dissociates. Mitosis-specific destruction of GATA1 delays reactivation selectively of genes that retain GATA1 during mitosis. These studies suggest a requirement of mitotic "bookmarking" by GATA1 for the faithful propagation of cell-type-specific transcription programs through cell division.


Assuntos
Células Eritroides/metabolismo , Fator de Transcrição GATA1/metabolismo , Hematopoese , Mitose , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Linhagem Celular , Células-Tronco Embrionárias/metabolismo , Código das Histonas , Camundongos , Proteínas Nucleares/metabolismo , Especificidade de Órgãos , Proteínas Proto-Oncogênicas/metabolismo , Proteína 1 de Leucemia Linfocítica Aguda de Células T , Fatores de Transcrição/metabolismo
12.
Mol Cell Biol ; 31(4): 662-73, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21135121

RESUMO

The mobilization of nucleosomes by the ATP-dependent remodeler INO80 is quite different from another remodeler (SWI/SNF) that is also involved in gene activation. Unlike that recently shown for SWI/SNF, INO80 is unable to disassemble nucleosomes when remodeling short nucleosomal arrays. Instead, INO80 more closely resembles, although with notable exceptions, the nucleosome spacing activity of ISW2 and ISW1a, which are generally involved in transcription repression. INO80 required a minimum of 33 to 43 bp of extranucleosomal DNA for mobilizing nucleosomes, with 70 bp being optimal. INO80 prefers to move mononucleosomes to the center of DNA, like ISW2 and ISW1a, but does so with higher precision. Unlike ISW2/1a, INO80 does not require the H4 tail for nucleosome mobilization; instead, the H2A histone tail negatively regulates nucleosome movement by INO80. INO80 moved arrays of two or three nucleosomes with 50 or 79 bp of linker DNA closer together, with a final length of ∼30 bp of linker DNA or a repeat length of ∼177 bp. A minimum length of >30 bp of linker DNA was required for nucleosome movement and spacing by INO80 in arrays.


Assuntos
Montagem e Desmontagem da Cromatina , Nucleossomos/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/metabolismo , Trifosfato de Adenosina/metabolismo , DNA Fúngico/genética , DNA Fúngico/metabolismo , Histonas/química , Histonas/metabolismo , Nucleossomos/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...