Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Curr Biol ; 34(11): 2509-2516.e3, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38744283

RESUMO

Acoustic cues are crucial to communication, navigation, and foraging in many animals, which hence face the problem of detecting and discriminating these cues in fluctuating noise levels from natural or anthropogenic sources. Such auditory dynamics are perhaps most extreme for echolocating bats that navigate and hunt prey on the wing in darkness by listening for weak echo returns from their powerful calls in complex, self-generated umwelts.1,2 Due to high absorption of ultrasound in air and fast flight speeds, bats operate with short prey detection ranges and dynamic sensory volumes,3 leading us to hypothesize that bats employ superfast vocal-motor adjustments to rapidly changing sensory scenes. To test this hypothesis, we investigated the onset and offset times and magnitude of the Lombard response in free-flying echolocating greater mouse-eared bats exposed to onsets of intense constant or duty-cycled masking noise during a landing task. We found that the bats invoked a bandwidth-dependent Lombard response of 0.1-0.2 dB per dB increase in noise, with very short delay and relapse times of 20 ms in response to onsets and termination of duty-cycled noise. In concert with the absence call time-locking to noise-free periods, these results show that free-flying bats exhibit a superfast, but hard-wired, vocal-motor response to increased noise levels. We posit that this reflex is mediated by simple closed-loop audio-motor feedback circuits that operate independently of wingbeat and respiration cycles to allow for rapid adjustments to the highly dynamic auditory scenes encountered by these small predators.


Assuntos
Quirópteros , Ecolocação , Voo Animal , Animais , Quirópteros/fisiologia , Ecolocação/fisiologia , Voo Animal/fisiologia , Ruído , Percepção Auditiva/fisiologia , Masculino , Feminino , Vocalização Animal/fisiologia
2.
BMC Zool ; 9(1): 9, 2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38679717

RESUMO

Most bats hunt insects on the wing at night using echolocation as their primary sensory modality, but nevertheless maintain complex eye anatomy and functional vision. This raises the question of how and when insectivorous bats use vision during their largely nocturnal lifestyle. Here, we test the hypothesis that the small insectivorous bat, Myotis daubentonii, relies less on echolocation, or dispenses with it entirely, as visual cues become available during challenging acoustic noise conditions. We trained five wild-caught bats to land on a spherical target in both silence and when exposed to broad-band noise to decrease echo detectability, while light conditions were manipulated in both spectrum and intensity. We show that during noise exposure, the bats were almost three times more likely to use multiple attempts to solve the task compared to in silent controls. Furthermore, the bats exhibited a Lombard response of 0.18 dB/dBnoise and decreased call intervals earlier in their flight during masking noise exposures compared to in silent controls. Importantly, however, these adjustments in movement and echolocation behaviour did not differ between light and dark control treatments showing that small insectivorous bats maintain the same echolocation behaviour when provided with visual cues under challenging conditions for echolocation. We therefore conclude that bat echolocation is a hard-wired sensory system with stereotyped compensation strategies to both target range and masking noise (i.e. Lombard response) irrespective of light conditions. In contrast, the adjustments of call intervals and movement strategies during noise exposure varied substantially between individuals indicating a degree of flexibility that likely requires higher order processing and perhaps vocal learning.

4.
J Exp Biol ; 225(7)2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-35262171

RESUMO

Echolocating bats listen for weak echoes to navigate and hunt, which makes them prone to masking from background noise and jamming from other bats and prey. As for electrical fish that display clear spectral jamming avoidance responses (JAR), bats have been reported to mitigate the effects of jamming by shifting the spectral contents of their calls, thereby reducing acoustic interference to improve echo-to-noise ratio (ENR). Here, we tested the hypothesis that frequency-modulating bats (FM bats) employ a spectral JAR in response to six masking noise bands ranging from 15 to 90 kHz, by measuring the -3 dB endpoints and peak frequency of echolocation calls from five male Daubenton's bats (Myotis daubentonii) during a landing task. The bats were trained to land on a noise-generating spherical transducer surrounded by a star-shaped microphone array, allowing for acoustic localization and source parameter quantification of on-axis calls. We show that the bats did not employ spectral JAR as the peak frequency during jamming remained unaltered compared with that of silent controls (all P>0.05, 60.73±0.96 kHz, mean±s.e.m.), and -3 dB endpoints decreased in noise irrespective of treatment type. Instead, Daubenton's bats responded to acoustic jamming by increasing call amplitude via a Lombard response that was bandwidth dependent, ranging from a mean of 0.05 dB/dB (95% confidence interval 0.04-0.06 dB/dB) noise for the most narrowband noise (15-30 kHz) to 0.17 dB/dB (0.16-0.18 dB/dB) noise for the most broadband noise (30-90 kHz). We conclude that Daubenton's bats, despite having the vocal flexibility to do so, do not employ a spectral JAR, but defend ENRs via a bandwidth-dependent Lombard response.


Assuntos
Quirópteros , Ecolocação , Acústica , Animais , Quirópteros/fisiologia , Ecolocação/fisiologia , Alimentos , Masculino , Ruído
5.
J Exp Biol ; 225(3)2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-35037031

RESUMO

Echolocating bats hunt prey on the wing under conditions of poor lighting by emission of loud calls and subsequent auditory processing of weak returning echoes. To do so, they need adequate echo-to-noise ratios (ENRs) to detect and distinguish target echoes from masking noise. Early obstacle avoidance experiments report high resilience to masking in free-flying bats, but whether this is due to spectral or spatiotemporal release from masking, advanced auditory signal detection or an increase in call amplitude (Lombard effect) remains unresolved. We hypothesized that bats with no spectral, spatial or temporal release from masking noise defend a certain ENR via a Lombard effect. We trained four bats (Myotis daubentonii) to approach and land on a target that broadcasted broadband noise at four different levels. An array of seven microphones enabled acoustic localization of the bats and source level estimation of their approach calls. Call duration and peak frequency did not change, but average call source levels (SLRMS, at 0.1 m as dB re. 20 µPa) increased, from 112 dB in the no-noise treatment, to 118 dB (maximum 129 dB) at the maximum noise level of 94 dB re. 20 µPa root mean square. The magnitude of the Lombard effect was small (0.13 dB SLRMS dB-1 of noise), resulting in mean broadband and narrowband ENRs of -11 and 8 dB, respectively, at the highest noise level. Despite these poor ENRs, the bats still performed echo-guided landings, making us conclude that they are very resilient to masking even when they cannot avoid it spectrally, spatially or temporally.


Assuntos
Quirópteros , Ecolocação , Animais , Ruído , Ultrassom , Vocalização Animal
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...