Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 3563, 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38670969

RESUMO

Synthetic glucocorticoids (GC), such as dexamethasone, are extensively used to treat chronic inflammation and autoimmune disorders. However, long-term treatments are limited by various side effects, including muscle atrophy. GC activities are mediated by the glucocorticoid receptor (GR), that regulates target gene expression in various tissues in association with cell-specific co-regulators. Here we show that GR and the lysine-specific demethylase 1 (LSD1) interact in myofibers of male mice, and that LSD1 connects GR-bound enhancers with NRF1-associated promoters to stimulate target gene expression. In addition, we unravel that LSD1 demethylase activity is required for triggering starvation- and dexamethasone-induced skeletal muscle proteolysis in collaboration with GR. Importantly, inhibition of LSD1 circumvents muscle wasting induced by pharmacological levels of dexamethasone, without affecting their anti-inflammatory activities. Thus, our findings provide mechanistic insights into the muscle-specific GC activities, and highlight the therapeutic potential of targeting GR co-regulators to limit corticotherapy-induced side effects.


Assuntos
Dexametasona , Glucocorticoides , Histona Desmetilases , Músculo Esquelético , Atrofia Muscular , Receptores de Glucocorticoides , Animais , Masculino , Histona Desmetilases/metabolismo , Histona Desmetilases/antagonistas & inibidores , Histona Desmetilases/genética , Glucocorticoides/farmacologia , Dexametasona/farmacologia , Receptores de Glucocorticoides/metabolismo , Camundongos , Atrofia Muscular/induzido quimicamente , Atrofia Muscular/metabolismo , Atrofia Muscular/patologia , Atrofia Muscular/tratamento farmacológico , Músculo Esquelético/metabolismo , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/patologia , Camundongos Endogâmicos C57BL , Regulação da Expressão Gênica/efeitos dos fármacos
2.
Nucleic Acids Res ; 49(8): 4472-4492, 2021 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-33836079

RESUMO

Skeletal muscle is a dynamic tissue the size of which can be remodeled through the concerted actions of various cues. Here, we investigated the skeletal muscle transcriptional program and identified key tissue-specific regulatory genetic elements. Our results show that Myod1 is bound to numerous skeletal muscle enhancers in collaboration with the glucocorticoid receptor (GR) to control gene expression. Remarkably, transcriptional activation controlled by these factors occurs through direct contacts with the promoter region of target genes, via the CpG-bound transcription factor Nrf1, and the formation of Ctcf-anchored chromatin loops, in a myofiber-specific manner. Moreover, we demonstrate that GR negatively controls muscle mass and strength in mice by down-regulating anabolic pathways. Taken together, our data establish Myod1, GR and Nrf1 as key players of muscle-specific enhancer-promoter communication that orchestrate myofiber size regulation.


Assuntos
Cromatina/metabolismo , Elementos Facilitadores Genéticos , Músculo Esquelético/metabolismo , Proteína MyoD/metabolismo , Fator 1 Nuclear Respiratório/metabolismo , Receptores de Glucocorticoides/metabolismo , Animais , Linhagem Celular , Cromatina/genética , Sequenciamento de Cromatina por Imunoprecipitação , Regulação da Expressão Gênica/genética , Histonas/genética , Histonas/metabolismo , Masculino , Redes e Vias Metabólicas/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Força Muscular/genética , Músculo Esquelético/fisiologia , Proteína MyoD/genética , Mioblastos/metabolismo , Fator 1 Nuclear Respiratório/genética , Receptores de Glucocorticoides/genética , Proteínas Recombinantes
3.
J Vis Exp ; (129)2017 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-29155791

RESUMO

We describe an efficient and reproducible protocol for the preparation of chromatin from adult mouse skeletal muscle, a physically resistant tissue with a high content of structural proteins. Dissected limb muscles from adult mice are physically disrupted by mechanical homogenisation, or a combination of mincing and douncing, in a hypotonic buffer before formaldehyde fixation of the cell lysate. The fixed nuclei are purified by further cycles of mechanical homogenisation or douncing and sequential filtrations to remove cell debris. The purified nuclei can be sonicated immediately or at a later stage after freezing. The chromatin can be efficiently sonicated and is suitable for chromatin immunoprecipitation experiments, as illustrated by the profiles obtained for transcription factors, RNA polymerase II, and covalent histone modifications. The binding events detected using chromatin prepared by this protocol are predominantly those taking place in the muscle fiber nuclei despite the presence of chromatin from other fiber-associated satellite and endothelial cells. This protocol is therefore adapted to study gene regulation in the adult mouse skeletal muscle.


Assuntos
Imunoprecipitação da Cromatina/métodos , Músculo Esquelético/metabolismo , Animais , Camundongos
4.
Am J Physiol Endocrinol Metab ; 313(1): E12-E25, 2017 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-28351832

RESUMO

To better define the role of male and female gonad-related factors (MGRF, presumably testosterone, and FGRF, presumably estradiol, respectively) on mouse hindlimb skeletal muscle contractile performance/function gain during postnatal development, we analyzed the effect of castration initiated before puberty in male and female mice. We found that muscle absolute and specific (normalized to muscle weight) maximal forces were decreased in 6-mo-old male and female castrated mice compared with age- and sex-matched intact mice, without alteration in neuromuscular transmission. Moreover, castration decreased absolute and specific maximal powers, another important aspect of muscle performance, in 6-mo-old males, but not in females. Absolute maximal force was similarly reduced by castration in 3-mo-old muscle fiber androgen receptor (AR)-deficient and wild-type male mice, indicating that the effect of MGRF was muscle fiber AR independent. Castration reduced the muscle weight gain in 3-mo mice of both sexes and in 6-mo females but not in males. We also found that bone morphogenetic protein signaling through Smad1/5/9 was not altered by castration in atrophic muscle of 3-mo-old mice of both sexes. Moreover, castration decreased the sexual dimorphism regarding muscle performance. Together, these results demonstrated that in the long term, MGRF and FGRF promote muscle performance gain in mice during postnatal development, independently of muscle growth in males, largely via improving muscle contractile quality (force and power normalized), and that MGFR and FGRF also contribute to sexual dimorphism. However, the mechanisms underlying MGFR and FGRF actions remain to be determined.


Assuntos
Envelhecimento/fisiologia , Hormônios Esteroides Gonadais/metabolismo , Contração Muscular/fisiologia , Força Muscular/fisiologia , Músculo Esquelético/crescimento & desenvolvimento , Animais , Animais Recém-Nascidos , Peso Corporal/fisiologia , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fadiga Muscular/fisiologia , Músculo Esquelético/metabolismo , Fatores Sexuais
5.
Muscle Nerve ; 55(2): 254-261, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27312354

RESUMO

INTRODUCTION: The effect of constitutive inactivation of the gene encoding myostatin on the gain in muscle performance during postnatal growth has not been well characterized. METHODS: We analyzed 2 murine myostatin knockout (KO) models, (i) the Lee model (KOLee ) and (ii) the Grobet model (KOGrobet ), and measured the contraction of tibialis anterior muscle in situ. RESULTS: Absolute maximal isometric force was increased in 6-month-old KOLee and KOGrobet mice, as compared to wild-type mice. Similarly, absolute maximal power was increased in 6-month-old KOLee mice. In contrast, specific maximal force (relative maximal force per unit of muscle mass was decreased in all 6-month-old male and female KO mice, except in 6-month-old female KOGrobet mice, whereas specific maximal power was reduced only in male KOLee mice. CONCLUSIONS: Genetic inactivation of myostatin increases maximal force and power, but in return it reduces muscle quality, particularly in male mice. Muscle Nerve 55: 254-261, 2017.


Assuntos
Contração Muscular/genética , Força Muscular/genética , Músculo Esquelético/fisiologia , Doenças Musculares/patologia , Miostatina/deficiência , Animais , Animais Recém-Nascidos , Modelos Animais de Doenças , Feminino , Masculino , Camundongos , Camundongos Knockout , Doenças Musculares/genética , Miostatina/genética , Fatores Sexuais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...