Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 7: 11009, 2016 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-26984102

RESUMO

Sodium-ion batteries are emerging as candidates for large-scale energy storage due to their low cost and the wide variety of cathode materials available. As battery size and adoption in critical applications increases, safety concerns are resurfacing due to the inherent flammability of organic electrolytes currently in use in both lithium and sodium battery chemistries. Development of solid-state batteries with ionic electrolytes eliminates this concern, while also allowing novel device architectures and potentially improving cycle life. Here we report the computation-assisted discovery and synthesis of a high-performance solid-state electrolyte material: Na10SnP2S12, with room temperature ionic conductivity of 0.4 mS cm(-1) rivalling the conductivity of the best sodium sulfide solid electrolytes to date. We also computationally investigate the variants of this compound where tin is substituted by germanium or silicon and find that the latter may achieve even higher conductivity.

2.
Anal Sci ; 25(2): 255-9, 2009 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19212062

RESUMO

Gold nanorods (AuNRs), rod-like gold nanoparticles, show strong plasmon bands in the near-infrared region, based on the longitudinal oscillation mode of surface plasmons. In this research, we have coated AuNRs with silica or poly (sodium 4-styrenesulfonate) (PSS) in order to evaluate the effects of surface modifications as a sensing probe material of AuNR. Multilayered assemblies of the PSS-coated AuNRs have been successfully fabricated on the glass substrate by electrostatic layer-by-layer adsorption, and their plasmonic band profiles have been analyzed as a function of refractive index. The profiles showed satisfactory linear responses with the refractive indices. The effect of the thickness of silica layer on the shift of plasmon band with refractive index of the surrounding media has been investigated, along with, the effect of silica coating on the thermal stability of AuNR. The thermal stability of the silica-coated AuNR has also been investigated. The two types of the above-described coating approaches have been compared.

3.
Anal Bioanal Chem ; 391(7): 2411-21, 2008 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-18607578

RESUMO

In recent years, plasmonics has emerged as a promising tool in the fields of analytical chemistry and biochemistry. In particular, surface plasmon resonance at the surfaces of gold nanostructures has led to the development of widespread interest in gold nanoparticles. In this review, we describe some of the recent progress in the manufacture and use of gold nanoparticles, with particular emphasis on gold nanorods. Furthermore, the spectroscopic and photochemical applications of gold nanospheres and nanorods are described.

4.
Biosens Bioelectron ; 23(4): 562-7, 2007 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-17768041

RESUMO

Living cell reactions are detected as changes of the angle of resonance (AR) for surface plasmon resonance (SPR). Since SPR reflects the events in the field of evanescence, cells need to be fixed on the sensor chip. In this study, we developed methods to fix living cells on a gold surface and to recover adherent cells from the culture dish, preserving their functions to be analyzed by SPR. Human basophils and B cells were fixed to the sensor chip by a biocompatible anchor for cell membranes (alpha-succinimidyloxysuccinyl omega-oleyloxy polyoxyethylene), aminoalkanethiol (cyteamine, 8-amino octanethiol) or an amino-reactive cross-linker (dithiobis [succinimidylpropionate]). They showed an increase of AR in response to various stimuli. RBL-2H3 cells, which firmly adhered to the culture dish, were cultured/recovered with HydroCell/simple pipetting, with RepCell/pipetting at 4 degrees C, or on normal plastic culture dishes with trypsinization or by scraping at 4 degrees C, respectively. The exocytosis of RBL-2H3 cells was largely impaired by scraping, but only slightly by the treatment with pipetting on HydroCell, on RepCell, or with trypsin. The membrane ruffling of the cells prepared by the last three treatments induced by antigens appeared the same. However, the change of AR with cells prepared by trypsin and those by scraping at 4 degrees C were lower than those by HydroCell or RepCell, suggesting that trypsin may harm molecules involved in cellular reactions. Thus, the methods of cell fixation and removal with HydroCell or RepCell should enable us to analyze various reactions in either adherent or non-adherent cells by SPR.


Assuntos
Técnicas Biossensoriais/métodos , Ouro/química , Ressonância de Plasmônio de Superfície/métodos , Animais , Adesão Celular , Linhagem Celular Tumoral , Células Imobilizadas/química , Células Imobilizadas/metabolismo
5.
J Phys Chem B ; 109(28): 13445-50, 2005 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-16852682

RESUMO

Using a vertical superconducting magnet (max. 15 T), we studied magnetic field effects on membrane tube morphology prepared by a silicate garden reaction. At zero field, semipermeable membrane tubes grew upward when metal salts were added to a sodium silicate aqueous solution. In the presence of a magnetic field (15 T, downward) right-handed helical membrane tubes grew along a glass vessel's inner surface when magnesium chloride and copper sulfate were added. Referring to membrane tubes by the names of metal cations used in their preparation, in the case of Mg(II) and Zn(II) membrane tubes, the left-handed helical tubes grew when the field direction was reversed upward. The left-handed helical Mg(II) membrane tubes grew in the magnetic field when a glass rod was placed in a vessel. Mg(II) and Zn(II) tubes, separate from a vessel wall, grew in a twisted shape in the magnetic field. In situ observation of the solution's motion during the reaction revealed that the Lorentz force on the outflow from the opened top of the hollow membrane tube induced convection of the solution near the tube exit, engendering chiral growth of the membrane tubes. Relative orientation of the outflow and a boundary (a vessel wall or glass rod surface) helped to determine the convection's direction.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...