Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Phylogenet Evol ; 191: 107987, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38081401

RESUMO

Ancient lakes are a hotspot of biodiversity. Freshwater species often experience spectacular species radiation after colonizing lakes from riverine habitats. Therefore, the relationship between the fauna of the ancient lakes and the surrounding riverine system has a special significance in understanding their origin and evolutionary history. The study of ancient lake species often focused on the lake colonization of riverine species. In contrast, far less attention has been placed on the reverse direction: the riverine colonization of the lake species, despite its importance in disentangling their complex evolutionary history. The freshwater snails in the genus Semisulcospira involve endemic groups that radiated in the ancient Lake Biwa. Using genetics and fossil records, we inferred that the ancestors of these lake-endemic Semisulcospira snails historically colonized the riverine habitats at least three times during the Middle Pleistocene. Each colonization resulted in the formation of a new lineage that was genetically and morphologically distinct from other lineages. Further, one of these colonizations was followed by hybridization with a cosmopolitan riverine species, which potentially facilitated the population persistence of the colonizers in the new environment. Despite their complex histories, all these colonizers were currently grouped within a single species, Semisulcospira kurodai, suggesting cryptic diversity in this species. This study highlights the significance of the riverine colonizations of the lake species to fully understand the diversification history of freshwater fauna in and around the ancient lakes.


Assuntos
Evolução Biológica , Lagos , Animais , Filogenia , Caramujos/genética , Caramujos/anatomia & histologia , Ecossistema
2.
Mol Phylogenet Evol ; 175: 107563, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35809852

RESUMO

Accurate species identification is of primary importance in ecology and evolutionary biology. For a long time, the unionid mussels Beringiana and Sinanodonta have puzzled researchers trying to unravel their diversity because of their poorly discernible morphologies. A recent study conducted species delineation of unionid mussels based on mitochondrial DNA variation, opening up a new avenue to grasp species diversity of the mussels. However, mtDNA-based classification may not align with species boundaries because mtDNA is prone to introgression and incomplete lineage sorting that cause discordance between species affiliation and gene phylogeny. In this study, we evaluated the validity of the mtDNA-based classification of unionid mussels Beringiana and Sinanodonta in Japan using mitochondrial sequence data, double digest restriction site-associated DNA library (ddRAD) sequencing, and morphological data. We found significant inconsistencies in the mitochondrial and nuclear DNA phylogenies, casting doubt on the reliability of the mtDNA-based classification in this group. In addition, nuclear DNA phylogeny revealed that there are at least two unionid lineages hidden in the mtDNA phylogeny. Although molecular dating technique indicates that Beringiana and Sinanodonta diverged >35 million years ago, their shell morphologies are often indistinguishable. Specifically, morphological analyses exhibited the parallel appearance of nearly identical ball-like shell forms in the two genera in Lake Biwa, which further complicates species identification and the morphological evolution of unionid mussels. Our study adds to a growing body of literature that accurate species identification of unionid mussels is difficult when using morphological characters alone. Although mtDNA-based classification is a simple and convenient way to classify unionid mussels, considerable caution is warranted for its application in ecological and evolutionary studies.


Assuntos
Bivalves , Unionidae , Animais , Bivalves/genética , DNA Mitocondrial/genética , Japão , Filogenia , Reprodutibilidade dos Testes , Unionidae/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...