Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Polymers (Basel) ; 13(18)2021 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-34578036

RESUMO

Fiber-reinforced polymer (FRP) composites are becoming more frequently adopted as so-called "corrosion-resistant" concrete reinforcement materials due to their excellent mechanical properties and formability. However, their long-term reliability must be thoroughly investigated in order to understand failure mechanisms and to develop service life models. This study is on the mechanical properties of a prototype basalt fiber-reinforced polypropylene (BFPP) rod under quasi-static and sustained loading. Static strength and modulus at elevated temperatures do not decrease significantly, but the variability in strength increases with temperature, as shown by a Weibull analysis. Creep behavior is typical of unidirectional FRP, where the creep rupture strength follows a power law. Fatigue at various stress ratios R reveals the sensitivity of composite strength to the matrix damage, which increases at lower values of R (i.e., higher stress amplitudes). These results are discussed in the context of service life and concrete structure design guidelines.

2.
Materials (Basel) ; 12(1)2019 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-30621362

RESUMO

While intensive efforts are made to prepare carbon fiber reinforced plastics from renewable sources, less emphasis is directed towards elaborating green approaches for carbon fiber surface modification to improve the interfacial adhesion in these composites. In this study, we covalently attach lignin, a renewable feedstock, to a graphitic surface for the first time. The covalent bond is established via aromatic anchoring groups with amine functions taking part in a nucleophilic displacement reaction with a tosylated lignin derivative. The successful grafting procedures were confirmed by cyclic voltammetry, X-ray photoelectron spectroscopy, and field emission scanning electron microscopy coupled with energy dispersive X-ray spectroscopy. Both fragmentation and microdroplet tests were conducted to evaluate the interfacial shear strength of lignin coated carbon fiber samples embedded in a green cellulose propionate matrix and in a commercially used epoxy resin. The microdroplet test showed ~27% and ~65% increases in interfacial shear strength for the epoxy and cellulose propionate matrix, respectively. For the epoxy matrix covalent bond, it is expected to form with lignin, while for the cellulosic matrix hydrogen bond formation might take place; furthermore, plastisizing effects are also considered. Our study opens the gates for utilizing lignin coating to improve the shear tolerance of innovative composites.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...