Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Am Chem Soc ; 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38591952

RESUMO

Oxide ion conductors are attractive materials because of their wide range of applications, such as solid oxide fuel cells. Oxide ion conduction in oxyhalides (compounds containing both oxide ions and halide ions) is rare. In the present work, we found that Sillén oxychlorides, Bi2-xTexLuO4+x/2Cl (x = 0, 0.1, and 0.2), show high oxide ion conductivity. The bulk conductivity of Bi1.9Te0.1LuO4.05Cl reaches 10-2 S cm-1 at 431 °C, which is much lower than 644 °C of yttria-stabilized zirconia (YSZ) and 534 °C of La0.8Sr0.2Ga0.83Mg0.17O2.815 (LSGM). Thanks to the low activation energy, Bi1.9Te0.1LuO4.05Cl exhibits a high bulk conductivity of 1.5 × 10-3 S cm-1 even at a low temperature of 310 °C, which is 204 times higher than that of YSZ. The low activation energy is attributed to the interstitialcy oxide ion diffusion in the triple fluorite-like layer, as evidenced by neutron diffraction experiments (Rietveld and neutron scattering length density analyses), bond valence-based energy calculations, static DFT calculations, and ab initio molecular dynamics simulations. The electrical conductivity of Bi1.9Te0.1LuO4.05Cl is almost independent of the oxygen partial pressure from 10-18 to 10-4 atm at 431 °C, indicating the electrolyte domain. Bi1.9Te0.1LuO4.05Cl also exhibits high chemical stability under a CO2 flow and ambient air at 400 °C. The oxide ion conduction due to the two-dimensional interstitialcy diffusion is considered to be common in Sillén oxyhalides with triple fluorite-like layers, such as Bi1.9Te0.1RO4.05Cl (R = La, Nd, Sm, Eu, Gd, Dy, Ho, Er, Tm, Yb, Lu) and Bi6-2xTe2xO8+xBr2 (x = 0.1, 0.5). The present study opens a new field of materials chemistry: oxide ion-conducting Sillén oxyhalides with triple fluorite-like layers.

2.
RSC Adv ; 12(34): 21926-21931, 2022 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-36043061

RESUMO

The thermal behavior of alkylated diarylethene molecules (2,3-bis(2,4,5-trimethyl-3-thienyl)-N-alkylmaleimides; DAE-Cn) was investigated. DAE-C1 and DAE-C2 exhibited cold crystallization, which is a heat-storage phenomenon. In addition, DAE-Cn showed photoisomerization; the open-ring isomer O-DAE-Cn was formed by visible light irradiation and transformed to the closed-ring isomer C-DAE-Cn by UV light irradiation. X-ray diffraction and optical microscopy analyses revealed that O-DAE-Cn exhibited cold crystallization and C-DAE-Cn showed poor crystallinity. UV irradiation (365 nm) inhibited cold crystallization, and visible light irradiation (525 nm) triggered cold crystallization, suggesting that heat storage by the cold crystallization of DAE-Cn can be photo-controlled.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...