Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chem Commun (Camb) ; 60(50): 6375-6378, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38808541

RESUMO

Organic electrolytes with Li+ were analyzed by far-ultraviolet (≤200 nm) spectroscopy, achieved by an attenuated total reflectance setup. The spectra showed a redshift with Li+ addition, attributed to the charge transfer, as revealed by quantum chemical calculations. Multivariate analysis successfully decomposed the spectra into pure solvent and Li-coordinated solvent components.

2.
Spectrochim Acta A Mol Biomol Spectrosc ; 312: 124052, 2024 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-38394883

RESUMO

The visualization of the variation of the inter/intra molecular interaction (C = O⋯CH3) between poly[(R)-3-hydroxybutyrate] (PHB) and poly-L-lactic acid (PLLA) in the PHB/PLLA miscible blend during phase separation and crystallization process was successfully investigated using Raman imaging. Images of the blend were developed using high- and low-frequency Raman spectra acquired during the isothermal crystallization of the blend, and both of them were compared. The low-frequency region allowed to observe the changes in the hydrogen bonds between the molecular chains in the blend during phase separation and crystallization via a band at 75 cm-1 derived from PHB. The imaging results obtained using the band at 75 cm-1 due to hydrogen bonding (C = O⋯CH3) between molecular chains were in good agreement with the results obtained using the C = O stretching band at 1720 cm-1. Herein, we demonstrated that the low-frequency region of the Raman spectrum is more sensitive to detecting the start of the phase separation and crystallization of PHB than the corresponding high-frequency region.

3.
Sci Adv ; 10(1): eadi3147, 2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-38170775

RESUMO

Singlet fission can generate an exchange-coupled quintet triplet pair state 5TT, which could lead to the realization of quantum computing and quantum sensing using entangled multiple qubits even at room temperature. However, the observation of the quantum coherence of 5TT has been limited to cryogenic temperatures, and the fundamental question is what kind of material design will enable its room-temperature quantum coherence. Here, we show that the quantum coherence of singlet fission-derived 5TT in a chromophore-integrated metal-organic framework can be over hundred nanoseconds at room temperature. The suppressed motion of the chromophores in ordered domains within the metal-organic framework leads to the enough fluctuation of the exchange interaction necessary for 5TT generation but, at the same time, does not cause severe 5TT decoherence. Furthermore, the phase and amplitude of quantum beating depend on the molecular motion, opening the way to room-temperature molecular quantum computing based on multiple quantum gate control.

4.
Foods ; 12(10)2023 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-37238763

RESUMO

Spectroscopic methods deliver a valuable non-destructive analytical tool that provides simultaneous qualitative and quantitative characterization of various samples. Apples belong to the world's most consumed crops and with the current challenges of climate change and human impacts on the environment, maintaining high-quality apple production has become critical. This review comprehensively analyzes the application of spectroscopy in near-infrared (NIR) and visible (Vis) regions, which not only show particular potential in evaluating the quality parameters of apples but also in optimizing their production and supply routines. This includes the assessment of the external and internal characteristics such as color, size, shape, surface defects, soluble solids content (SSC), total titratable acidity (TA), firmness, starch pattern index (SPI), total dry matter concentration (DM), and nutritional value. The review also summarizes various techniques and approaches used in Vis/NIR studies of apples, such as authenticity, origin, identification, adulteration, and quality control. Optical sensors and associated methods offer a wide suite of solutions readily addressing the main needs of the industry in practical routines as well, e.g., efficient sorting and grading of apples based on sweetness and other quality parameters, facilitating quality control throughout the production and supply chain. This review also evaluates ongoing development trends in the application of handheld and portable instruments operating in the Vis/NIR and NIR spectral regions for apple quality control. The use of these technologies can enhance apple crop quality, maintain competitiveness, and meet the demands of consumers, making them a crucial topic in the apple industry. The focal point of this review is placed on the literature published in the last five years, with the exceptions of seminal works that have played a critical role in shaping the field or representative studies that highlight the progress made in specific areas.

5.
J Chem Phys ; 156(7): 074705, 2022 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-35183073

RESUMO

The demand for Li secondary batteries is increasing, with the need for batteries with a higher level of performance and improved safety features. The use of a highly concentrated aqueous electrolyte solution is an effective way to increase the safety of batteries because it is possible to use "water-in-salt" (WIS) and "hydrate-melt" (HM) electrolytes for practical applications. These electrolytes exhibit a potential window of >3.0 V, which is attributed to the difference between the HOMO and the LUMO energies of the n orbital of the pure water molecules and that of the water molecules in the hydration shells of a metal ion, according to theoretical predictions. Thus, in the present study, the attenuated total reflectance (ATR)-far-ultraviolet (FUV) spectra of water and super-concentrated aqueous solutions, such as WIS and HM using a Li salt, were experimentally investigated. The effects of anions, cations, and deuteriums on the ATR-FUV spectra were examined. The ATR-FUV method is an excellent means of studying highly concentrated aqueous salt solutions. The results suggest that the transition energy of water molecules in an ultrahighly concentrated aqueous electrolyte containing HM and WIS increased by nearly 0.4 eV (corresponding to an energy shift of over 10 nm) compared to an aqueous electrolyte with a typical water concentration. It was also revealed that the transition energy of water changes depending on the environment of the non-bonding electron, which is directly connected with or affected by hydrogen bonding with other water molecules or directly connected with Li+.

6.
Anal Sci ; 36(1): 91-93, 2020 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-31866602

RESUMO

Attenuated total reflectance-far ultraviolet (ATR-FUV) spectra of Li+ and polyether ligands, such as glymes and poly (ethylene glycol) (PEG), in solution give information about changes in the electronic states of the ligands. From the ATR-FUV spectra, the coordination numbers between Li+ and monoglyme, diglyme, triglyme, and PEG400 were determined to be 4, 5, 6, and 5, respectively. Our results indicate that Li+ is coordinated only by the ligands rather than its counter-ions.

7.
J Phys Chem A ; 123(50): 10746-10756, 2019 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-31729875

RESUMO

This study investigates the electronic transitions of complexes of lithium with polyethylene glycol (PEG) by the absorption bands of solvent molecules via attenuated total reflectance spectroscopy in the far-UV region (ATR-FUV). Alkali-metal complexes are interesting materials because of their functional characteristics such as good ionic conductivity. These complexes are used as polymer electrolytes for Li batteries and as one of the new types of room-temperature ionic liquids, termed solvation ionic liquids. Considering these applications, alkali-metal complexes have been studied mainly for their electrochemical characteristics; there is no fundamental study providing a clear understanding of electronic states in terms of electronic structures for the ground and excitation states near the highest occupied molecular orbital-lowest occupied molecular orbital transitions. This study explores the electronic transitions of ligand molecules in alkali-metal complexes. In the ATR-FUV spectra of the Li-PEG complex, a decrease in intensity and a large blue shift (over 4 nm) were observed to result from an increase in the concentration of Li salts. This observation suggests the formation of a complex, with coordinate bonding between Li+ and the O atoms in PEG. Comparison of the experimental spectrum with a simulated spectrum of the Li-PEG complex calculated by time-dependent density functional theory indicated that changes in the intensities and peak positions of bands at approximately 155 and 177 nm (pure PEG shows bands at 155, 163, and 177 nm) are due to the formation of coordinate bonding between Li+ and the O atoms in the ether molecule. The intensity of the 177 nm band depends on the number of residual free O atoms in the ether, and the peak wavelength at approximately 177 nm changes with the expansion of the electron clouds of PEG. We assign a band in the 145-155 nm region to the alkali-metal complex because we observed a new band at approximately 150 nm in the ATR-FUV spectra of very highly concentrated binary mixtures.

8.
Spectrochim Acta A Mol Biomol Spectrosc ; 197: 170-175, 2018 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-29395931

RESUMO

We measured the attenuated total reflectance-far ultraviolet (ATR-FUV) spectra of poly(ethylene glycol) (PEG; average molecular weights of 200, 300, and 400) and related materials in the liquid state in the 145-200-nm wavelength region. For appropriately assigning the absorption bands, we also performed theoretical simulation of the unit-number dependent electronic spectra. The FUV spectra of PEGs contain three bands, which are assigned to the transitions between n(CH2OCH2)-3s Rydberg state (176 nm), n(CH2OCH2)-3p Rydberg state (163 nm), and n(OH)-3p Rydberg state (153 nm). Since the contribution of n(OH) decreases compared to n(CH2OCH2) with increase in the number of units, the ratios of the molar absorption coefficients, ε, at 153 nm relative to 163 nm, decrease. On the other hand, the ratio of ε at 176 nm to that at 163 nm increases with increase in the number of units, because of the difference in the number of unoccupied orbitals in the transitions. The calculated results suggest that n orbitals form two electronic bands. In the upper band, the electrons expand over the ether chain, whereas in the lower band, the electrons are localized in the terminal OH in the PEGs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...