Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Lab Invest ; 94(12): 1406-18, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25365204

RESUMO

Cholangiopathies are characterized by dysregulation of the balance between biliary growth and loss. We have shown that histamine (HA) stimulates biliary growth via autocrine mechanisms. To evaluate the paracrine effects of mast cell (MC) stabilization on biliary proliferation, sham or BDL rats were treated by IP-implanted osmotic pumps filled with saline or cromolyn sodium (24 mg/kg BW/day (inhibits MC histamine release)) for 1 week. Serum, liver blocks and cholangiocytes were collected. Histidine decarboxylase (HDC) expression was measured using real-time PCR in cholangiocytes. Intrahepatic bile duct mass (IBDM) was evaluated by IHC for CK-19. MC number was determined using toluidine blue staining and correlated to IBDM. Proliferation was evaluated by PCNA expression in liver sections and purified cholangiocytes. We assessed apoptosis using real-time PCR and IHC for BAX. Expression of MC stem factor receptor, c-kit, and the proteases chymase and tryptase were measured by real-time PCR. HA levels were measured in serum by EIA. In vitro, MCs and cholangiocytes were treated with 0.1% BSA (basal) or cromolyn (25 µM) for up to 48 h prior to assessing HDC expression, HA levels and chymase and tryptase expression. Supernatants from MCs treated with or without cromolyn were added to cholangiocytes before measuring (i) proliferation by MTT assays, (ii) HDC gene expression by real-time PCR and (iii) HA release by EIA. In vivo, cromolyn treatment decreased BDL-induced: (i) IBDM, MC number, and biliary proliferation; (ii) HDC and MC marker expression; and (iii) HA levels. Cromolyn treatment increased cholangiocyte apoptosis. In vitro, cromolyn decreased HA release and chymase and tryptase expression in MCs but not in cholangiocytes. Cromolyn-treated MC supernatants decreased biliary proliferation and HA release. These studies provide evidence that MC histamine is key to biliary proliferation and may be a therapeutic target for the treatment of cholangiopathies.


Assuntos
Ductos Biliares Intra-Hepáticos/patologia , Colestase/tratamento farmacológico , Cromolina Sódica/farmacologia , Liberação de Histamina/efeitos dos fármacos , Mastócitos/metabolismo , Animais , Proliferação de Células/efeitos dos fármacos , Modelos Animais de Doenças , Masculino , Ratos , Ratos Endogâmicos F344
2.
Toxicol Sci ; 106(1): 290-9, 2008 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-18703563

RESUMO

Osteopontin (OPN) up-regulation is known to mediate hepatic inflammation in a rodent model of alcoholic liver disease (ALD) and alcohol ingestion is reported to inhibit hepatic peroxisome proliferator-activated receptor-alpha (PPAR-alpha) activity leading to hepatic steatosis and inflammation. Therefore, the objective of this study was to investigate the potential relationship between the anti-inflammatory PPAR-alpha and proinflammatory OPN in rats and mice livers, and cell cultures of hepatocytes and biliary epithelium. Experiments were designed to evaluate the influence of ethanol (EtOH), lipopolysaccharide (LPS), and acetaldehyde (ACA) on OPN and PPAR-alpha expression levels in vivo (rats and mice) and in vitro (hepatocytes and biliary epithelium). Adult Sprague-Dawley rats and C57BL6 mice were fed EtOH-containing Lieber-DeCarli liquid diet for 6 weeks and injected with a single dose of LPS. A combination of EtOH and LPS treated rats and mice showed significant induction of hepatic OPN expression compared with the controls. Similarly, cells exposed to physiological doses of EtOH, LPS, a combination of EtOH and LPS, and ACA resulted in increased OPN protein and mRNA expression. Rats and mice in ALD model and cells treated with EtOH and ACA showed downregulation of PPAR-alpha mRNA. Also, DNA binding activity of PPAR-alpha to PPAR response element was significantly reduced following treatment. Overexpression of PPAR-alpha rescued the reduced PPAR-alpha activity and PPAR-alpha agonist, bezafibrate, elevated PPAR-alpha activity after treatment of EtOH, LPS, and ACA when cells were exposed by bezafibrate. To further delineate the potential relationship between OPN and PPAR-alpha, OPN(-/-) mice showed no change of PPAR-alpha mRNA level although wild-type mice showed downregulation of PPAR-alpha mRNA after EtOH treatment. In conclusion, the current study suggests that OPN is induced by EtOH and its metabolite ACA and opposite relationship likely exist between PPAR-alpha and OPN expression within the liver during ALD.


Assuntos
Ductos Biliares/metabolismo , Hepatopatias Alcoólicas/metabolismo , Fígado/metabolismo , Osteopontina/metabolismo , PPAR alfa/metabolismo , Acetaldeído , Animais , Bezafibrato/farmacologia , Ductos Biliares/efeitos dos fármacos , Ductos Biliares/patologia , Linhagem Celular Tumoral , Modelos Animais de Doenças , Células Epiteliais/metabolismo , Etanol , Hepatócitos/metabolismo , Humanos , Lipopolissacarídeos , Fígado/efeitos dos fármacos , Fígado/patologia , Hepatopatias Alcoólicas/etiologia , Hepatopatias Alcoólicas/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Osteopontina/deficiência , Osteopontina/genética , PPAR alfa/agonistas , PPAR alfa/genética , RNA Mensageiro/metabolismo , Ratos , Ratos Sprague-Dawley , Transcrição Gênica , Transfecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...