Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Biochem ; 129(1): 107-18, 2001 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-11134964

RESUMO

The glycosaminoglycan (GAG)-protein linkage regions of various proteoglycans share the common tetrasaccharide GlcA-Gal-Gal-Xyl-attached to Ser residues in the core proteins. In previous analysis we demonstrated unique modifications by epimerization, sulfation and phosphorylation of the component sugars. Here we developed a sensitive analytical method for the linkage region oligosaccharides to detect or monitor structural variations and changes. This will be useful for investigation of their biological roles, which are largely unknown, but they have been implicated in biosynthesis. A variety of linkage region-derived hexasaccharides was first prepared as reducing sugar chains from peptide chondroitin/dermatan sulfate of whale cartilage, shark cartilage, and bovine aorta by means of chondroitinase digestion in conjunction with beta-elimination in the absence of reducing reagents, but involving a mild alkali, 0.5 M LiOH, at 4 degrees C to prevent peeling reactions. The structures of these oligosaccharides were determined by the combination of HPLC, enzymatic digestion, matrix-assisted laser desorption ionization time-of-flight (MALDI-TOF) mass spectrometry, and (1)H NMR spectroscopy, which revealed eleven different hexasaccharides including a novel structure, DeltaHexAalpha1-3GalNAcbeta1-4IdoAalpha1-3Gal(4-O-sulfate)beta1-3Galbeta1-4Xyl (DeltaHexA and IdoA represent unsaturated hexuronic acid and L-iduronic acid, respectively). These oligosaccharides were labeled with a fluorophore, 2-aminobenzamide, to prepare analytical probes using the recently developed procedure [Kinoshita and Sugahara (1999) Anal. Biochem. 269, 367-378]. The fluorophore-tagged hexasacharides of low picomoles were well separated by HPLC and successfully analyzed by MALDI-TOF mass spectrometry. The principle of the method should be applicable to the analysis of the linkage region oligosaccharides derived from heparin and heparan sulfate as well.


Assuntos
Sulfatos de Condroitina/química , Dermatan Sulfato/química , Oligossacarídeos/isolamento & purificação , Fosfatase Alcalina/metabolismo , Animais , Sequência de Carboidratos , Cartilagem/química , Bovinos , Cromatografia Líquida de Alta Pressão , Corantes Fluorescentes , Compostos de Lítio/química , Espectroscopia de Ressonância Magnética , Oligossacarídeos/química , Tubarões , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Baleias , ortoaminobenzoatos/química
2.
J Biol Chem ; 275(48): 37407-13, 2000 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-10978312

RESUMO

The heparin-binding neurotrophic factor midkine (MK) has been proposed to mediate neuronal cell adhesion and neurite outgrowth promotion by interacting with cell-surface heparan sulfate. We have observed that over-sulfated chondroitin sulfate (CS) D and CS-E show neurite outgrowth-promoting activity in embryonic day (E) 18 rat hippocampal neurons (Nadanaka, S., Clement, A., Masayama, K., Faissner, A., and Sugahara, K. (1998) J. Biol. Chem. 273, 3296-3307). In the present study, various CS isoforms were examined for their ability to inhibit the MK-mediated cell adhesion of cortical neuronal cells in comparison with heparin from porcine intestine and heparan sulfate from bovine kidney. E17-18 rat cortical neuronal cells were cultured on plates coated with recombinant MK in a grid pattern. The cells attached to and extended their neurites along the MK substratum. Cell adhesion was inhibited by squid cartilage over-sulfated CS-E as well as by heparin, but not by heparan sulfate or other CS isoforms. Direct interactions of MK with various glycosaminoglycans were then evaluated using surface plasmon resonance, showing that CS-E bound MK as strongly as heparin, followed by other over-sulfated CS isoforms, CS-H and CS-K. Furthermore, E18 rat brain extracts showed an E disaccharide unit, GlcUAbeta1-3GalNAc(4,6-O-disulfate). These findings indicate that CS chains containing the E unit as well as heparin-like glycosaminoglycans may be involved in the expression and/or modulation of the multiple neuroregulatory functions of MK such as neuronal adhesion and migration and promotion of neurite outgrowth.


Assuntos
Proteínas de Transporte/fisiologia , Adesão Celular/fisiologia , Sulfatos de Condroitina/farmacologia , Citocinas , Neurônios/citologia , Animais , Encéfalo/citologia , Encéfalo/embriologia , Encéfalo/metabolismo , Proteínas de Transporte/antagonistas & inibidores , Proteínas de Transporte/metabolismo , Sulfatos de Condroitina/química , Sulfatos de Condroitina/metabolismo , Camundongos , Midkina , Ligação Proteica , Ratos , Proteínas Recombinantes/antagonistas & inibidores , Proteínas Recombinantes/metabolismo , Ácidos Sulfúricos/química
3.
Glycoconj J ; 16(6): 291-305, 1999 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-10579698

RESUMO

Oversulfated chondroitin sulfate H (CS-H) isolated from hagfish notochord is a unique dermatan sulfate consisting mainly of IdoAalpha1-3GalNAc(4S,6S), where IdoA, GalNAc, 4S and 6S represent L-iduronic acid, Nacetyl-D-galactosamine, 4-O-sulfate and 6-O-sulfate, respectively. Several tetra- and hexasccharide fractions were isolated from CS-H after partial digestion with bacterial chondroitinase B to investigate the sequential arrangement of the IdoAalpha1-3GalNAc(4S,6S) unit in the CS-H polysaccharide. A structural analysis of the isolated oligosaccharides by enzymatic digestions, mass spectrometry and 1H NMR spectroscopy demonstrated that the major tetrasaccharides shared the common disulfated core structure delta4,5HexAalpha1-3GalNAc(4S)beta1-4IdoAalpha1-3 GalNAc (4S) with 0 approximately 3 additional O-sulfate groups, where delta4,5HexA represents 4-deoxy-alpha-L-threo-hex-4-enepyranosyluronic acid. The major hexasaccharides shared the common trisulfated core structure delta4,5HexAalpha1-3 GalNAc(4S)beta1-4 IdoAalpha1-3 GalNAc(4S)beta1-4IdoAalpha1-3 GalNAc(4S) with 1 approximately 4 additional O-sulfate groups. Some extra sulfate groups in both tetra- and hexasaccharides were located at the C-2 position of a delta4,5HexA or an internal IdoA residue, or C-6 position of 4-O-sulfated GalNAc residues, forming the unique disulfated or trisulfated disaccharide units, IdoA (2S)-GalNAc(4S), IdoA-GalNAc(4S,6S) and IdoA (2S)-GalNAc(4S,6S), where 2S represents 2-O-sulfate. Of the demonstrated sequences, five tetra- and four hexasaccharide sequences containing these units were novel.


Assuntos
Sulfatos de Condroitina/química , Feiticeiras (Peixe)/metabolismo , Oligossacarídeos/química , Animais , Sequência de Carboidratos , Sulfatos de Condroitina/isolamento & purificação , Cromatografia Líquida de Alta Pressão , Espectroscopia de Ressonância Magnética , Dados de Sequência Molecular , Notocorda/química , Oligossacarídeos/isolamento & purificação , Espectrometria de Massas de Bombardeamento Rápido de Átomos , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...