Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 13(1): 537, 2023 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-36631625

RESUMO

Doping a typical topological insulator, Bi2Se3, with Ag impurity causes a semiconductor-metal (S-M) transition at 35 K. To deepen the understanding of this phenomenon, structural and transport properties of Ag-doped Bi2Se3 were studied. Single-crystal X-ray diffraction (SC-XRD) showed no structural transitions but slight shrinkage of the lattice, indicating no structural origin of the transition. To better understand electronic properties of Ag-doped Bi2Se3, extended analyses of Hall effect and electric-field effect were carried out. Hall effect measurements revealed that the reduction of resistance was accompanied by increases in not only carrier density but carrier mobility. The field-effect mobility is different for positive and negative gate voltages, indicating that the EF is located at around the bottom of the bulk conduction band (BCB) and that the carrier mobility in the bulk is larger than that at the bottom surface at all temperatures. The pinning of the EF at the BCB is found to be a key issue to induce the S-M transition, because the transition can be caused by depinning of the EF or the crossover between the bulk and the top surface transport.

2.
Sci Rep ; 9(1): 5376, 2019 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-30926890

RESUMO

The temperature dependence of the resistivity (ρ) of Ag-doped Bi2Se3 (AgxBi2-xSe3) shows insulating behavior above 35 K, but below 35 K, ρ suddenly decreases with decreasing temperature, in contrast to the metallic behavior for non-doped Bi2Se3 at 1.5-300 K. This significant change in transport properties from metallic behavior clearly shows that the Ag doping of Bi2Se3 can effectively tune the Fermi level downward. The Hall effect measurement shows that carrier is still electron in AgxBi2-xSe3 and the electron density changes with temperature to reasonably explain the transport properties. Furthermore, the positive gating of AgxBi2-xSe3 provides metallic behavior that is similar to that of non-doped Bi2Se3, indicating a successful upward tuning of the Fermi level.

3.
Sci Rep ; 6: 36258, 2016 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-27811975

RESUMO

From the C 1s and K 2p photoelectron holograms, we directly reconstructed atomic images of the cleaved surface of a bimetal-intercalated graphite superconductor, (Ca, K)C8, which differed substantially from the expected bulk crystal structure based on x-ray diffraction (XRD) measurements. Graphene atomic images were collected in the in-plane cross sections of the layers 3.3 Å and 5.7 Å above the photoelectron emitter C atom and the stacking structures were determined as AB- and AA-type, respectively. The intercalant metal atom layer was found between two AA-stacked graphenes. The K atomic image revealing 2 × 2 periodicity, occupying every second centre site of C hexagonal columns, was reconstructed, and the Ca 2p peak intensity in the photoelectron spectra of (Ca, K)C8 from the cleaved surface was less than a few hundredths of the K 2p peak intensity. These observations indicated that cleavage preferentially occurs at the KC8 layers containing no Ca atoms.

4.
Sci Rep ; 5: 12774, 2015 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-26239256

RESUMO

We previously discovered multiple superconducting phases in the ammoniated Na-doped FeSe material, (NH3)yNaxFeSe. To clarify the origin of the multiple superconducting phases, the variation of Tc was fully investigated as a function of x in (NH3)yNaxFeSe. The 32 K superconducting phase is mainly produced in the low-x region below 0.4, while only a single phase is observed at x = 1.1, with Tc = 45 K, showing that the Tc depends significantly on x, but it changes discontinuously with x. The crystal structure of (NH3)yNaxFeSe does not change as x increases up to 1.1, i.e., the space group of I4/mmm. The lattice constants, a and c, of the low-Tc phase (Tc = 32.5 K) are 3.9120(9) and 14.145(8) Å, respectively, while a = 3.8266(7) Å and c = 17.565(9) Å for the high-Tc phase (~46 K). The c increases in the high Tc phase, implying that the Tc is directly related to c. In (NH3)yLixFeSe material, the Tc varies continuously within the range of 39 to 44 K with changing x. Thus, the behavior of Tc is different from that of (NH3)yNaxFeSe. The difference may be due to the difference in the sites that the Na and Li occupy.

5.
Nano Lett ; 13(11): 5153-8, 2013 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-24111556

RESUMO

We study the electronic properties in few-layer graphenes (FLGs) classified by even/odd layer number n. FLGs with even n have only parabolic energy dispersions, whereas FLGs with odd n have a linear dispersion besides parabolic ones. This difference leads to a distinct density of states in FLGs, experimentally confirmed by the gate-voltage dependence of the electric double-layer capacitance. Thus, FLGs with odd n are unique materials that have relativistic carriers originating in linear energy dispersion.

6.
Sci Rep ; 3: 1595, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23549208

RESUMO

Ionic-liquid gates have a high carrier density due to their atomically thin electric double layer (EDL) and extremely large geometrical capacitance Cg. However, a high carrier density in graphene has not been achieved even with ionic-liquid gates because the EDL capacitance CEDL between the ionic liquid and graphene involves the series connection of Cg and the quantum capacitance Cq, which is proportional to the density of states. We investigated the variables that determine CEDL at the molecular level by varying the number of graphene layers n and thereby optimising Cq. The CEDL value is governed by Cq at n < 4, and by Cg at n > 4. This transition with n indicates a composite nature for CEDL. Our finding clarifies a universal principle that determines capacitance on a microscopic scale, and provides nanotechnological perspectives on charge accumulation and energy storage using an ultimately thin capacitor.


Assuntos
Grafite/química , Líquidos Iônicos/química , Modelos Químicos , Simulação por Computador , Capacitância Elétrica , Teste de Materiais , Eletricidade Estática , Propriedades de Superfície
7.
Nano Lett ; 13(3): 1126-30, 2013 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-23409962

RESUMO

Graphene has two kinds of edges which have different electronic properties. A singular electronic state emerges at zigzag edges, while it disappears at armchair edges. We study the edge-dependent transport properties in few-layer graphene by applying a side gate voltage to the edge with an ionic liquid. The devices indicating a conductance peak at the charge neutrality point have zigzag edges, confirmed by micro-Raman spectroscopy mapping. The hopping transport between zigzag edges increases the conductance.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...