Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Foods ; 12(20)2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37893677

RESUMO

Cruciferous vegetable consumption is associated with numerous health benefits attributed to the phytochemical sulforaphane (SFN) that exerts antioxidant and chemopreventive properties, among other bioactive compounds. Broccoli sprouts, rich in SFN precursor glucoraphanin (GRN), have been investigated in numerous clinical trials. Broccoli microgreens are similarly rich in GRN but have remained largely unexplored. The goal of this study was to examine SFN bioavailability and the microbiome profile in subjects fed a single serving of fresh broccoli microgreens. Eleven subjects participated in a broccoli microgreens feeding study. Broccoli microgreens GRN and SFN contents and stability were measured. Urine and stool SFN metabolite profiles and microbiome composition were examined. Broccoli microgreens had similar GRN content to values previously reported for broccoli sprouts, which was stable over time. Urine SFN metabolite profiles in broccoli microgreens-fed subjects were similar to those reported previously in broccoli sprouts-fed subjects, including the detection of SFN-nitriles. We also reported the detection of SFN metabolites in stool samples for the first time. A single serving of broccoli microgreens did not significantly alter microbiome composition. We showed in this study that broccoli microgreens are a significant source of SFN. Our work provides the foundation for future studies to establish the health benefits of broccoli microgreens consumption.

2.
Nutrients ; 15(12)2023 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-37375594

RESUMO

Despite the reported prevalence of micronutrient deficiencies in older adults, it is not yet established whether multivitamin/multimineral (MV/MM) supplements improve blood micronutrient status in individuals over the age of 65. Therefore, a cohort of 35 healthy men (>67 years) was recruited for an MV/MM supplementation trial. The primary endpoint was, as an indicator of micronutrient status, changes in blood micronutrient biomarkers from baseline to at least six months of supplementation with MV/MM or placebo. The secondary endpoint was basal O2 consumption in monocytes as an indicator of cellular metabolism. MV/MM supplementation improved blood concentrations of pyridoxal phosphate, calcifediol, α-tocopherol, and ß-carotene concentrations throughout the cohort. By contrast, those in the placebo group generally showed declines in blood vitamin concentrations and an increased prevalence of suboptimal vitamin status during the study period. On the other hand, MV/MM supplementation did not significantly affect blood mineral concentrations, i.e., calcium, copper, iron, magnesium, and zinc. Interestingly, MV/MM supplementation prevented the decline in monocyte O2 consumption rate. Overall, MV/MM use improves or prevents declines in vitamin, but not mineral, status and limits declines in cellular O2 consumption, which may have important implications for metabolism and immune health in healthy older men.


Assuntos
Oligoelementos , Vitaminas , Masculino , Humanos , Idoso , Suplementos Nutricionais , Minerais , Micronutrientes , Biomarcadores , Metabolismo Energético , Método Duplo-Cego
3.
Chem Biol Interact ; 382: 110608, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37369263

RESUMO

Current risk assessments for environmental carcinogens rely on animal studies utilizing doses orders of magnitude higher than actual human exposures. Epidemiological studies of people with high exposures (e.g., occupational) are of value, but rely on uncertain exposure data. In addition, exposures are typically not to a single chemical but to mixtures, such as polycyclic aromatic hydrocarbons (PAHs). The extremely high sensitivity of accelerator mass spectrometry (AMS) allows for dosing humans with known carcinogens with de minimus risk. In this study UPLC-AMS was used to assess the toxicokinetics of [14C]-benzo[a]pyrene ([14C]-BaP) when dosed alone or in a binary mixture with phenanthrene (Phe). Plasma was collected for 48 h following a dose of [14C]-BaP (50 ng, 5.4 nCi) or the same dose of [14C]-BaP plus Phe (1250 ng). Following the binary mixture, Cmax of [14C]-BaP significantly decreased (4.4-fold) whereas the volume of distribution (Vd) increased (2-fold). Further, the toxicokinetics of twelve [14C]-BaP metabolites provided evidence of little change in the metabolite profile of [14C]-BaP and the pattern was overall reduction consistent with reduced absorption (decrease in Cmax). Although Phe was shown to be a competitive inhibitor of the major hepatic cytochrome P-450 (CYP) responsible for metabolism of [14C]-BaP, CYP1A2, the high inhibition constant (Ki) and lack of any increase in unmetabolized [14C]-BaP in plasma makes this mechanism unlikely to be responsible. Rather, co-administration of Phe reduces the absorption of [14C]-BaP through a mechanism yet to be determined. This is the first study to provide evidence that, at actual environmental levels of exposure, the toxicokinetics of [14C]-BaP in humans is markedly altered by the presence of a second PAH, Phe, a common component of environmental PAH mixtures.


Assuntos
Fenantrenos , Hidrocarbonetos Policíclicos Aromáticos , Animais , Humanos , Benzo(a)pireno/toxicidade , Toxicocinética , Fenantrenos/toxicidade , Fenantrenos/metabolismo , Hidrocarbonetos Policíclicos Aromáticos/metabolismo , Espectrometria de Massas
4.
Toxicol Appl Pharmacol ; 460: 116377, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36642108

RESUMO

Utilizing the atto-zeptomole sensitivity of UPLC-accelerator mass spectrometry (UPLC-AMS), we previously demonstrated significant first-pass metabolism following escalating (25-250 ng) oral micro-dosing in humans of [14C]-benzo[a]pyrene ([14C]-BaP). The present study examines the potential for supplementation with Brussels sprouts (BS) or 3,3'-diindolylmethane (DIM) to alter plasma levels of [14C]-BaP and metabolites over a 48-h period following micro-dosing with 50 ng (5.4 nCi) [14C]-BaP. Volunteers were dosed with [14C]-BaP following fourteen days on a cruciferous vegetable restricted diet, or the same diet supplemented for seven days with 50 g of BS or 300 mg of BR-DIM® prior to dosing. BS or DIM reduced total [14C] recovered from plasma by 56-67% relative to non-intervention. Dietary supplementation with DIM markedly increased Tmax and reduced Cmax for [14C]-BaP indicative of slower absorption. Both dietary treatments significantly reduced Cmax values of four downstream BaP metabolites, consistent with delaying BaP absorption. Dietary treatments also appeared to reduce the T1/2 and the plasma AUC(0,∞) for Unknown Metabolite C, indicating some effect in accelerating clearance of this metabolite. Toxicokinetic constants for other metabolites followed the pattern for [14C]-BaP (metabolite profiles remained relatively consistent) and non-compartmental analysis did not indicate other significant alterations. Significant amounts of metabolites in plasma were at the bay region of [14C]-BaP irrespective of treatment. Although the number of subjects and large interindividual variation are limitations of this study, it represents the first human trial showing dietary intervention altering toxicokinetics of a defined dose of a known human carcinogen.


Assuntos
Benzo(a)pireno , Carcinógenos , Humanos , Suplementos Nutricionais , Toxicocinética
5.
Environ Int ; 159: 107045, 2022 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-34920278

RESUMO

Benzo[a]pyrene (BaP) is formed by incomplete combustion of organic materials (petroleum, coal, tobacco, etc.). BaP is designated by the International Agency for Research on Cancer as a group 1 known human carcinogen; a classification supported by numerous studies in preclinical models and epidemiology studies of exposed populations. Risk assessment relies on toxicokinetic and cancer studies in rodents at doses 5-6 orders of magnitude greater than average human uptake. Using a dose-response design at environmentally relevant concentrations, this study follows uptake, metabolism, and elimination of [14C]-BaP in human plasma by employing UPLC - accelerator mass spectrometry (UPLC-AMS). Volunteers were administered 25, 50, 100, and 250 ng (2.7-27 nCi) of [14C]-BaP (with interceding minimum 3-week washout periods) with quantification of parent [14C]-BaP and metabolites in plasma measured over 48 h. [14C]-BaP median Tmax was 30 min with Cmax and area under the curve (AUC) approximating dose-dependency. Marked inter-individual variability in plasma pharmacokinetics following a 250 ng dose was seen with 7 volunteers as measured by the Cmax (8.99 ± 7.08 ng × mL-1) and AUC0-48hr (68.6 ± 64.0 fg × hr-1 × mL-1). Approximately 3-6% of the [14C] recovered (AUC0-48 hr) was parent compound, demonstrating extensive metabolism following oral dosing. Metabolite profiles showed that, even at the earliest time-point (30 min), a substantial percentage of [14C] in plasma was polar BaP metabolites. The best fit modeling approach identified non-compartmental apparent volume of distribution of BaP as significantly increasing as a function of dose (p = 0.004). Bay region tetrols and dihydrodiols predominated, suggesting not only was there extensive first pass metabolism but also potentially bioactivation. AMS enables the study of environmental carcinogens in humans with de minimus risk, allowing for important testing and validation of physiologically based pharmacokinetic models derived from animal data, risk assessment, and the interpretation of data from high-risk occupationally exposed populations.


Assuntos
Benzo(a)pireno , Carcinógenos , Animais , Benzo(a)pireno/farmacocinética , Humanos , Espectrometria de Massas , Medição de Risco
6.
Drug Metab Dispos ; 49(8): 694-705, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34035125

RESUMO

3,3'-Diindolylmethane (DIM), a major phytochemical derived from ingestion of cruciferous vegetables, is also a dietary supplement. In preclinical models, DIM is an effective cancer chemopreventive agent and has been studied in a number of clinical trials. Previous pharmacokinetic studies in preclinical and clinical models have not reported DIM metabolites in plasma or urine after oral dosing, and the pharmacological actions of DIM on target tissues is assumed to be solely via the parent compound. Seven subjects (6 males and 1 female) ranging from 26-65 years of age, on a cruciferous vegetable-restricted diet prior to and during the study, took 2 BioResponse DIM 150-mg capsules (45.3 mg DIM/capsule) every evening for one week with a final dose the morning of the first blood draw. A complete time course was performed with plasma and urine collected over 48 hours and analyzed by UPLC-MS/MS. In addition to parent DIM, two monohydroxylated metabolites and 1 dihydroxylated metabolite, along with their sulfate and glucuronide conjugates, were present in both plasma and urine. Results reported here are indicative of significant phase 1 and phase 2 metabolism and differ from previous pharmacokinetic studies in rodents and humans, which reported only parent DIM present after oral administration. 3-((1H-indole-3-yl)methyl)indolin-2-one, identified as one of the monohydroxylated products, exhibited greater potency and efficacy as an aryl hydrocarbon receptor agonist when tested in a xenobiotic response element-luciferase reporter assay using Hepa1 cells. In addition to competitive phytochemical-drug adverse reactions, additional metabolites may exhibit pharmacological activity highlighting the importance of further characterization of DIM metabolism in humans. SIGNIFICANCE STATEMENT: 3,3'-Diindolylmethane (DIM), derived from indole-3-carbinol in cruciferous vegetables, is an effective cancer chemopreventive agent in preclinical models and a popular dietary supplement currently in clinical trials. Pharmacokinetic studies to date have found little or no metabolites of DIM in plasma or urine. In marked contrast, we demonstrate rapid appearance of mono- and dihydroxylated metabolites in human plasma and urine as well as their sulfate and glucuronide conjugates. The 3-((1H-indole-3-yl)methyl)indolin-2-one metabolite exhibited significant aryl hydrocarbon receptor agonist activity, emphasizing the need for further characterization of the pharmacological properties of DIM metabolites.


Assuntos
Indóis , Administração Oral , Anticarcinógenos/sangue , Anticarcinógenos/farmacocinética , Anticarcinógenos/urina , Cápsulas , Suplementos Nutricionais , Desenvolvimento de Medicamentos , Vias de Eliminação de Fármacos , Feminino , Humanos , Inativação Metabólica/fisiologia , Indóis/sangue , Indóis/farmacocinética , Indóis/urina , Masculino , Pessoa de Meia-Idade , Compostos Fitoquímicos/sangue , Compostos Fitoquímicos/farmacocinética , Compostos Fitoquímicos/urina
7.
Nutrients ; 12(8)2020 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-32823974

RESUMO

Older adults are at increased risk for vitamin and mineral deficiencies that contribute to age-related immune system decline. Several lines of evidence suggest that taking a multi-vitamin and mineral supplement (MVM) could improve immune function in individuals 55 and older. To test this hypothesis, we provided healthy older adults with either an MVM supplement formulated to improve immune function (Redoxon® VI, Singapore) or an identical, inactive placebo control to take daily for 12 weeks. Prior to and after treatment, we measured (1) their blood mineral and vitamin status (i.e., vitamin C, zinc and vitamin D); (2) immune function (i.e., whole blood bacterial killing activity, neutrophil phagocytic activity, and reactive oxygen species production); (3) immune status (salivary IgA and plasma cytokine/chemokine levels); and (4) self-reported health status. MVM supplementation improved vitamin C and zinc status in blood and self-reported health-status without altering measures of immune function or status or vitamin D levels, suggesting that healthy older adults may benefit from MVM supplementation. Further development of functional assays and larger study populations should improve detection of specific changes in immune function after supplementation in healthy older adults. Clinical Trials Registration: ClinicalTrials.gov #NCT02876315.


Assuntos
Envelhecimento/imunologia , Suplementos Nutricionais , Ingestão de Alimentos/imunologia , Fenômenos Fisiológicos da Nutrição do Idoso/imunologia , Minerais/administração & dosagem , Vitaminas/administração & dosagem , Fatores Etários , Idoso , Idoso de 80 Anos ou mais , Envelhecimento/metabolismo , Envelhecimento/fisiologia , Citocinas/sangue , Método Duplo-Cego , Ingestão de Alimentos/fisiologia , Fenômenos Fisiológicos da Nutrição do Idoso/fisiologia , Feminino , Humanos , Imunoglobulina A/metabolismo , Masculino , Minerais/sangue , Neutrófilos/imunologia , Fagocitose , Espécies Reativas de Oxigênio , Vitaminas/sangue
8.
J Nutr ; 148(12): 1924-1930, 2018 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-30517727

RESUMO

Background: Inadequate vitamin E and magnesium intakes are of concern for older adults owing to the associated incidence of age-related diseases. Objective: This study was designed to determine the extent to which a 16-wk intervention with hazelnuts alters vitamin E and magnesium status in a group of older men and women, and used a pre-post intervention design without a control group to adjust for temporal changes. Methods: Participants (n = 32 including 22 women; mean ± SD age: 63 ± 6 y) consumed hazelnuts (∼57 g/d) for 16 wk. Blood and urine samples and anthropomorphic measures were taken at the start and end of the intervention to determine plasma concentrations of α-tocopherol and serum concentrations of magnesium, lipids, glucose, insulin, and high-sensitivity C-reactive protein along with urinary vitamin E metabolites; several other micronutrients were measured by a lymphocyte proliferation assay. There were 3 primary endpoints, calculated as the mean changes in measurements between baseline and the end of the 16-wk intervention for 1) plasma α-tocopherol, 2) urinary α-carboxyethyl hydroxychromanol (α-CEHC; an α-tocopherol metabolite), and 3) serum magnesium. Results: Hazelnut consumption increased concentrations of the urinary α-tocopherol metabolite α-CEHC (mean ± SD: 0.84 ± 0.45 to 1.14 ± 0.50 µmol/g creatinine; P = 0.0006). In addition, hazelnut consumption increased serum concentrations of magnesium (+2.1%, P = 0.05), decreased concentrations of fasting glucose (-3.4%, P = 0.03) and LDL cholesterol (-6.0%, P = 0.02), and decreased total:HDL cholesterol ratios (-4.5%, P = 0.009). No significant changes were observed in blood pressure, lymphocyte proliferation assays, and serum concentrations of insulin, high-sensitivity C-reactive protein, triglyceride, α-tocopherol, or HDL cholesterol. Conclusions: Consuming hazelnuts improves a biomarker of vitamin E status in older adults. Vitamin E is a shortfall micronutrient, as identified by the Dietary Guidelines for Americans 2015-2020, which frequently is consumed at levels less than the Estimated Average Requirement of 12 mg/d; thus, hazelnuts should be considered as part of a healthy dietary pattern. This trial was registered at clinicaltrials.gov as NCT03485989.


Assuntos
Corylus , alfa-Tocoferol/sangue , Idoso , Idoso de 80 Anos ou mais , Proteína C-Reativa/análise , Feminino , Humanos , Lipídeos/sangue , Ativação Linfocitária , Magnésio/sangue , Masculino , Pessoa de Meia-Idade , alfa-Tocoferol/urina
9.
Food Chem Toxicol ; 115: 136-147, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29518434

RESUMO

Benzo[a]pyrene (BaP), a polycyclic aromatic hydrocarbon (PAH), is a known human carcinogen. In non-smoking adults greater than 95% of BaP exposure is through diet. The carcinogenicity of BaP is utilized by the U.S. EPA to assess relative potency of complex PAH mixtures. PAH relative potency factors (RPFs, BaP = 1) are determined from high dose animal data. We employed accelerator mass spectrometry (AMS) to determine pharmacokinetics of [14C]-BaP in humans following dosing with 46 ng (an order of magnitude lower than human dietary daily exposure and million-fold lower than animal cancer models). To assess the impact of co-administration of food with a complex PAH mixture, humans were dosed with 46 ng of [14C]-BaP with or without smoked salmon. Subjects were asked to avoid high BaP-containing diets and a 3-day dietary questionnaire given to assess dietary exposure prior to dosing and three days post-dosing with [14C]-BaP. Co-administration of smoked salmon, containing a complex mixture of PAHs with an RPF of 460 ng BaPeq, reduced and delayed absorption. Administration of canned commercial salmon, containing very low amounts of PAHs, showed the impacts on pharmacokinetics were not due to high amounts of PAHs but rather a food matrix effect.


Assuntos
Benzo(a)pireno/farmacocinética , Carcinógenos/farmacocinética , Produtos Pesqueiros/análise , Salmão/metabolismo , Adulto , Idoso , Animais , Benzo(a)pireno/metabolismo , Radioisótopos de Carbono/análise , Carcinógenos/metabolismo , Culinária , Feminino , Produtos Pesqueiros/efeitos adversos , Inocuidade dos Alimentos , Humanos , Masculino , Pessoa de Meia-Idade , Hidrocarbonetos Policíclicos Aromáticos/metabolismo , Hidrocarbonetos Policíclicos Aromáticos/farmacocinética , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...