RESUMO
Type IV secretion systems (T4SS) are multiprotein structures that direct the translocation of specific molecules across the bacterial cell envelope. As in other bacteria, pathogenicity of the genus Brucella essentially depends on the integrity of the T4SS-encoding virB operon, whose expression is regulated by multiple transcription factors belonging to different families. Previously, we identified IHF and HutC, two direct regulators of the virB genes that were isolated from total protein extracts of Brucella. Here, we report the identification of MdrA, a third regulatory element that was isolated using the same screening procedure. This transcription factor, which belongs to the MarR-family of transcriptional regulators, binds at two different sites of the virB promoter and regulates expression in a growth phase-dependent manner. Like other members of the MarR family, specific ligands were able to dissociate MdrA from DNA in vitro. Determination of the MdrA-binding sites by DNase I footprinting and analyses of protein-DNA complexes by electrophoresis mobility shift assays (EMSAs) showed that MdrA competes with IHF and HutC for the binding to the promoter because their target DNA sequences overlap. Unlike IHF, both MdrA and HutC bound to the promoter without inducing bending of DNA. Moreover, the two latter transcription factors activated virB expression to similar extents, and in doing so, they are functionally redundant. Taken together, our results show that MdrA is a regulatory element that directly modulates the activity of the virB promoter and is probably involved in coordinating gene expression in response to specific environmental signals.
Assuntos
Brucella abortus/metabolismo , Regulação Bacteriana da Expressão Gênica , Fatores de Transcrição/metabolismo , Transcrição Gênica , Fatores de Virulência/biossíntese , Sítios de Ligação , Brucella abortus/patogenicidade , Pegada de DNA , DNA Bacteriano/metabolismo , Ensaio de Desvio de Mobilidade Eletroforética , Regiões Promotoras Genéticas , Ligação ProteicaRESUMO
The metabolic pathways leading to the synthesis of bacterial glycogen involve the action of several enzymes, among which glycogen synthase (GS) catalyzes the elongation of the α-1,4-glucan. GS from Agrobacterium tumefaciens uses preferentially ADPGlc, although UDPGlc can also be used as glycosyl donor with less efficiency. We present here a continuous spectrophotometric assay for the determination of GS activity using ADP- or UDPGlc. When ADPGlc was used as the substrate, the production of ADP is coupled to NADH oxidation via pyruvate kinase (PK) and lactate dehydrogenase (LDH). With UDPGlc as substrate, UDP was converted to ADP via adenylate kinase and subsequent coupling to PK and LDH reactions. Using this assay, we determined the kinetic parameters of GS and compared them with those obtained with the classical radiochemical method. For this purpose, we improved the expression procedure of A. tumefaciens GS using Escherichia coli BL21(DE3)-RIL cells. This assay allows the continuous monitoring of glycosyltransferase activity using ADPGlc or UDPGlc as sugar-nucleotide donors.
Assuntos
Agrobacterium tumefaciens/enzimologia , Glicogênio Sintase/isolamento & purificação , Glicogênio Sintase/metabolismo , Glicogênio/biossíntese , Espectrofotometria/métodos , Adenosina Difosfato Glucose/metabolismo , Clonagem Molecular , Primers do DNA/genética , Eletroforese em Gel de Poliacrilamida , Escherichia coli , Cinética , Uridina Difosfato Glucose/metabolismoRESUMO
Brucella abortus is the etiological agent of bovine brucellosis, an infectious disease of humans and cattle. Its pathogenesis is mainly based on its ability to survive and multiply inside macrophages. It has been demonstrated that if B. abortus ferrochelatase cannot incorporate iron into protoporphyrin IX to synthesize heme, the intracellular replication and virulence in mice is highly attenuated. Therefore, it can be hypothesized that the unavailability of iron could lead to the same attenuation in B. abortus pathogenicity. Thus, the purpose of this work was to obtain a B. abortus derivative unable to keep an internal iron pool and test its ability to replicate under iron limitation. To achieve this, we searched for iron-storage proteins in the genome of brucellae and found bacterioferritin (Bfr) as the sole ferritin encoded. Then, a B. abortus bfr mutant was built up and its capacity to store iron and replicate under iron limitation was investigated. Results indicated that B. abortus Bfr accounts for 70% of the intracellular iron content. Under iron limitation, the bfr mutant suffered from enhanced iron restriction with respect to wild type according to its growth retardation pattern, enhanced sensitivity to oxidative stress, accelerated production of siderophores, and altered expression of membrane proteins. Nonetheless, the bfr mutant was able to adapt and replicate even inside eukaryotic cells, indicating that B. abortus responds to internal iron starvation before sensing external iron availability. This suggests an active role of Bfr in controlling iron homeostasis through the availability of Bfr-bound iron.
Assuntos
Proteínas de Bactérias/metabolismo , Brucella abortus/metabolismo , Grupo dos Citocromos b/metabolismo , Ferritinas/metabolismo , Homeostase , Ferro/metabolismo , Animais , Brucella abortus/patogenicidade , Linhagem Celular , Grupo dos Citocromos b/deficiência , Células Epiteliais/microbiologia , Ferritinas/deficiência , Humanos , Macrófagos/microbiologia , Camundongos , Virulência , Fatores de Virulência/metabolismoRESUMO
Ethylene inhibits the establishment of symbiosis between rhizobia and legumes. Several rhizobia species express the enzyme ACC deaminase, which degrades the ethylene precursor 1-cyclopropane-1-carboxilate (ACC), leading to reductions in the amount of ethylene evolved by the plant. M. loti has a gene encoding ACC deaminase, but this gene is under the activity of the NifA-RpoN-dependent promoter; thus, it is only expressed inside the nodule. The M. loti structural gene ACC deaminase (acdS) was integrated into the M. loti chromosome under a constitutive promoter activity. The resulting strain induced the formation of a higher number of nodules and was more competitive than the wild-type strain on Lotus japonicus and L. tenuis. These results suggest that the introduction of the ACC deaminase activity within M. loti in a constitutive way could be a novel strategy to increase nodulation competitiveness of the bacteria, which could be useful for the forage inoculants industry.
Assuntos
Alphaproteobacteria/enzimologia , Carbono-Carbono Liases/genética , Lotus/microbiologia , Simbiose , Raízes de Plantas/microbiologiaRESUMO
VjbR is a LuxR-type quorum-sensing (QS) regulator that plays an essential role in the virulence of the intracellular facultative pathogen Brucella, the causative agent of brucellosis. It was previously described that VjbR regulates a diverse group of genes, including the virB operon. The latter codes for a type IV secretion system (T4SS) that is central for the pathogenesis of Brucella. Although the regulatory role of VjbR on the virB promoter (P(virB)) was extensively studied by different groups, the VjbR-binding site had not been identified so far. Here, we identified the target DNA sequence of VjbR in P(virB) by DNase I footprinting analyses. Surprisingly, we observed that VjbR specifically recognizes a sequence that is identical to a half-binding site of the QS-related regulator MrtR of Mesorhizobium tianshanense. As shown by DNase I footprinting and electrophoretic mobility shift assays, generation of a palindromic MrtR-like-binding site in P(virB) increased both the affinity and the stability of the VjbR-DNA complex, which confirmed that the QS regulator of Brucella is highly related to that of M. tianshanense. The addition of N-dodecanoyl homoserine lactone dissociated VjbR from the promoter, which confirmed previous reports that indicated a negative effect of this signal on the VjbR-mediated activation of P(virB). Our results provide new molecular evidence for the structure of the virB promoter and reveal unusual features of the QS target DNA sequence of the main regulator of virulence in Brucella.
Assuntos
Acil-Butirolactonas/farmacologia , Proteínas de Bactérias/metabolismo , Brucella abortus/metabolismo , Percepção de Quorum/efeitos dos fármacos , Proteínas de Bactérias/genética , Sítios de Ligação/genética , Brucella abortus/efeitos dos fármacos , Brucella abortus/genética , Pegada de DNA , DNA Bacteriano/genética , Ensaio de Desvio de Mobilidade Eletroforética , Óperon/genética , Regiões Promotoras Genéticas/genética , Regiões Promotoras Genéticas/fisiologia , Ligação Proteica/genética , Proteínas RecombinantesRESUMO
Brucellosis is a worldwide zoonosis that affects livestock and humans and is caused by closely related Brucella spp., which are adapted to intracellular life within cells of a large variety of mammals. Brucella can be considered a furtive pathogen that infects professional and non-professional phagocytes. In these cells Brucella survives in a replicative niche, which is characterized for having a very low oxygen tension and being deprived from nutrients such as amino acids and vitamins. Among these vitamins, we have focused on riboflavin (vitamin B2). Flavin metabolism has been barely implicated in bacterial virulence. We have recently described that Brucella and other Rhizobiales bear an atypical riboflavin metabolic pathway. In the present work we analyze the role of the flavin metabolism on Brucella virulence. Mutants on the two lumazine synthases (LS) isoenzymes RibH1 and RibH2 and a double RibH mutant were generated. These mutants and different complemented strains were tested for viability and virulence in cells and in mice. In this fashion we have established that at least one LS must be present for B. abortus survival and that RibH2 and not RibH1 is essential for intracellular survival due to its LS activity in vivo. In summary, we show that riboflavin biosynthesis is essential for Brucella survival inside cells or in mice. These results highlight the potential use of flavin biosynthetic pathway enzymes as targets for the chemotherapy of brucellosis.
Assuntos
Proteínas de Bactérias/metabolismo , Vias Biossintéticas , Brucella abortus/metabolismo , Riboflavina/biossíntese , Animais , Proteínas de Bactérias/genética , Western Blotting , Brucella abortus/genética , Brucella abortus/patogenicidade , Brucelose/microbiologia , Linhagem Celular , Feminino , Teste de Complementação Genética , Células HeLa , Humanos , Isoenzimas/genética , Isoenzimas/metabolismo , Proteínas de Membrana Lisossomal/metabolismo , Macrófagos/citologia , Macrófagos/metabolismo , Macrófagos/microbiologia , Camundongos , Camundongos Endogâmicos BALB C , Viabilidade Microbiana , Complexos Multienzimáticos/genética , Complexos Multienzimáticos/metabolismo , Mutação , VirulênciaRESUMO
Type IV secretion systems (T4SS) are multicomponent machineries involved in the translocation of effector molecules across the bacterial cell envelope. The virB operon of Brucella abortus codes for a T4SS that is essential for virulence and intracellular multiplication of the bacterium in the host. Previous studies showed that the virB operon of B. abortus is tightly regulated within the host cells. In order to identify factors implicated in the control of virB expression, we searched for proteins of Brucella that directly bind to the virB promoter (P(virB)). Using different procedures, we isolated a 27-kDa protein that binds specifically to P(virB). This protein was identified as HutC, the transcriptional repressor of the histidine utilization (hut) genes. Analyses of virB and hut promoter activity revealed that HutC exerts two different roles: it acts as a coactivator of transcription of the virB operon, whereas it represses the hut genes. Such activities were observed both intracellularly and in bacteria incubated under conditions that resemble the intracellular environment. Electrophoresis mobility shift assays (EMSA) and DNase I footprinting experiments revealed the structure, affinity, and localization of the HutC-binding sites and supported the regulatory role of HutC in both hut and virB promoters. Taken together, these results indicate that Brucella coopted the function of HutC to coordinate the Hut pathway with transcriptional regulation of the virB genes, probably as a way to sense its own metabolic state and develop adaptive responses to overcome intracellular host defenses.
Assuntos
Brucella abortus/genética , Brucella abortus/patogenicidade , Regulação Bacteriana da Expressão Gênica , Histidina/metabolismo , Regiões Promotoras Genéticas/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sítios de Ligação , Western Blotting , Brucella abortus/metabolismo , Pegada de DNA , Ensaio de Desvio de Mobilidade Eletroforética , Ligação Proteica , Transdução de Sinais/genética , Transdução de Sinais/fisiologia , Virulência/genéticaRESUMO
Starch synthase III from Arabidopsis thaliana contains an N-terminal region, including three in-tandem starch-binding domains, followed by a C-terminal catalytic domain. We have reported previously that starch-binding domains may be involved in the regulation of starch synthase III function. In this work, we analyzed the existence of protein interactions between both domains using pull-down assays, far western blotting and co-expression of the full and truncated starch-binding domains with the catalytic domain. Pull-down assays and co-purification analysis showed that the D(316-344) and D(495-535) regions in the D2 and D3 domains, respectively, but not the individual starch-binding domains, are involved in the interaction with the catalytic domain. We also determined that the residues W366 and Y394 in the D2 domain are important in starch binding. Moreover, the co-purified catalytic domain plus site-directed mutants of the D123 protein lacking these aromatic residues showed that W366 was key to the apparent affinity for the polysaccharide substrate of starch synthase III, whereas either of these amino acid residues altered ADP-glucose kinetics. In addition, the analysis of full-length and truncated proteins showed an almost complete restoration of the apparent affinity for the substrates and V(max) of starch synthase III. The results presented here suggest that the interaction of the N-terminal starch-binding domains, particularly the D(316-344) and D(495-535) regions, with the catalytic domains, as well as the full integrity of the starch-binding capacity of the D2 domain, are involved in the modulation of starch synthase III activity.
Assuntos
Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimologia , Glucosiltransferases/química , Glucosiltransferases/metabolismo , Sequência de Aminoácidos , Substituição de Aminoácidos , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Sequência de Bases , Sítios de Ligação/genética , Primers do DNA/genética , DNA de Plantas/genética , Glucosiltransferases/genética , Cinética , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Domínios e Motivos de Interação entre Proteínas , Estrutura Terciária de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Amido/metabolismo , Especificidade por SubstratoRESUMO
The virB genes coding type IV secretion system are necessary for the intracellular survival and replication of Brucella spp. In this study, extracellular proteins from B. abortus 2308 (wild type, WT) and its isogenic virB10 polar mutant were compared. Culture supernatants harvested in the early stationary phase were concentrated and subjected to 2D electrophoresis. Spots present in the WT strain but absent in the virB10 mutant (differential spots) were considered extracellular proteins released in a virB-related manner, and were identified by MALDI-TOF analysis and matching with Brucella genomes. Among the 11 differential proteins identified, DnaK chaperone (Hsp70), choloylglycine hydrolase (CGH) and a peptidyl-prolyl cis-trans isomerase (PPIase) were chosen for further investigation because of their homology with extracellular and/or virulence factors from other bacteria. The three proteins were obtained in recombinant form and specific monoclonal antibodies (mAbs) were prepared. By Western blot with these mAbs, the three proteins were detected in supernatants from the WT but not in those from the virB10 polar mutant or from strains carrying non-polar mutations in virB10 or virB11 genes. These results suggest that the expression of virB genes affects the extracellular release of DnaK, PPIase and CGH, and possibly other proteins from B. abortus.
Assuntos
Proteínas de Bactérias/metabolismo , Brucella abortus/genética , Proteômica , Fatores de Virulência/metabolismo , Amidoidrolases/metabolismo , Sequência de Aminoácidos , Animais , Proteínas de Bactérias/genética , Brucella abortus/metabolismo , Brucella abortus/patogenicidade , Linhagem Celular , Meios de Cultura , Eletroforese em Gel Bidimensional , Genes Bacterianos , Proteínas de Choque Térmico HSP70/metabolismo , Camundongos , Dados de Sequência Molecular , Peptidilprolil Isomerase/metabolismo , Alinhamento de Sequência , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Fatores de Virulência/genéticaRESUMO
Type III secretion systems (T3SS) have been found in several species of rhizobia. Proteins (termed effectors) secreted by this system are involved in host-range determination and influence nodulation efficiency. Mesorhizobium loti MAFF303099 possesses a functional T3SS in its symbiotic island whose expression is induced by flavonoids. As in other rhizobia, conserved cis-elements (tts box) were found in the promoter regions of genes or operons encoding T3SS components. Using a bioinformatics approach, we searched for other tts-box-controlled genes, and confirmed this transcriptional regulation for some of them using lacZ fusions to the predicted promoter regions. Translational fusions to a reporter peptide were created to demonstrate T3SS-mediated secretion of two new MAFF303099 effectors. Finally, we showed that mutation of the M. loti MAFF303099 T3SS affects its competitiveness on Lotus glaber and investigated, at the molecular level, responses of the model legume L. japonicus to the T3SS.
Assuntos
Alphaproteobacteria/genética , Proteínas de Bactérias/genética , Nódulos Radiculares de Plantas/genética , Simbiose/genética , Alphaproteobacteria/metabolismo , Alphaproteobacteria/fisiologia , Proteínas de Bactérias/análise , Proteínas de Bactérias/metabolismo , Biologia Computacional/métodos , Eletroforese em Gel de Poliacrilamida , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Interações Hospedeiro-Patógeno , Lotus/genética , Lotus/crescimento & desenvolvimento , Lotus/microbiologia , Espectrometria de Massas , Mutação , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Nódulos Radiculares de Plantas/crescimento & desenvolvimento , Nódulos Radiculares de Plantas/microbiologiaRESUMO
Cyclic beta-1,2-glucans (CbetaG) are periplasmic homopolysaccharides that have been shown to play an important role in several symbiotic and pathogenic relationships. Cyclic beta-1,2-glucan synthase (Cgs), the enzyme responsible for the synthesis of CbetaG, is an integral membrane polyfunctional protein that catalyzes the four enzymatic activities (initiation, elongation, phosphorolysis, and cyclization) required for the synthesis of CbetaG. Recently, we have identified the glycosyltransferase and the beta-1,2-glucooligosaccharide phosphorylase domains of Brucella abortus Cgs. In this study, we performed large-scale linker-scanning mutagenesis to gain further insight into the functional domains of Cgs. This analysis allowed us to construct a functional map of the enzyme and led to the identification of the minimal region required for the catalysis of initiation and elongation reactions. In addition, we identified the Cgs region (residues 991 to 1544) as being the protein domain required for cyclization and demonstrated that upon cyclization and releasing of the CbetaG, one or more glucose residues remain attached to the protein intermediate that serves as a primer for the next round of CbetaG synthesis. Finally, our results indicate that the overall control of the degree of polymerization of CbetaG is the result of a balance between elongation, phosphorolysis, and cyclization reactions.
Assuntos
Brucella abortus/enzimologia , Glucosiltransferases/química , Glucosiltransferases/metabolismo , beta-Glucanas/metabolismo , Proteínas de Bactérias , Conformação Proteica , Estrutura Terciária de ProteínaRESUMO
The Brucella cell envelope contains the zwitterionic phospholipids phosphatidylcholine (PC) and phosphatidylethanolamine (PE). Synthesis of PC occurs exclusively via the PC synthase pathway, implying that the pathogen depends on the choline synthesized by the host cell to form PC. Notably, PC is necessary to sustain a chronic infection process, which suggests that the membrane lipid content is relevant for Brucella virulence. In this study we investigated the first step of PE biosynthesis in B. abortus, which is catalyzed by phosphatidylserine synthase (PssA). Disruption of pssA abrogated the synthesis of PE without affecting the growth in rich complex medium. In minimal medium, however, the mutant required choline supplementation for growth, suggesting that at least PE or PC is necessary for Brucella viability. The absence of PE altered cell surface properties, but most importantly, it impaired several virulence traits of B. abortus, such as intracellular survival in both macrophages and HeLa cells, the maturation of the replicative Brucella-containing vacuole, and mouse colonization. These results suggest that membrane phospholipid composition is critical for the interaction of B. abortus with the host cell.
Assuntos
Brucella abortus/metabolismo , Brucella abortus/patogenicidade , Fosfatidiletanolaminas/biossíntese , Animais , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Brucella abortus/genética , Brucelose/microbiologia , CDPdiacilglicerol-Serina O-Fosfatidiltransferase/genética , CDPdiacilglicerol-Serina O-Fosfatidiltransferase/metabolismo , DNA Bacteriano/genética , Feminino , Técnicas de Inativação de Genes , Genes Bacterianos , Células HeLa , Humanos , Macrófagos/microbiologia , Camundongos , Camundongos Endogâmicos BALB C , Mutação , Fosfatidilcolinas/biossíntese , Plasmídeos , VirulênciaRESUMO
The intracellular pathogen Brucella abortus has an alternative sigma factor sigma54 (RpoN) highly similar to Sinorhizobium meliloti NtrA. RpoN was described to be required for the transcription of a wide range of genes involved in diverse physiological functions including the regulation of virulence-related factors in both plants and animal pathogens. B. abortus rpoN gene restored the normal growth of an S. meliloti ntrA mutant in minimal media with succinic acid as a sole carbon source as well as the formation of functional nodules in alfalfa, thus revealing that the gene is functional. B. abortus rpoN mutant and B. abortus wild-type strain harboring a multicopy plasmid coding for a wild-type rpoN gene displayed reduced survival under stationary-phase conditions suggesting that expression of RpoN must be tightly regulated. Real-time PCR analysis revealed that B. abortus rpoN expression is downregulated during the stationary phase of growth. This regulation is absent in the rpoN mutant background, indicating that RpoN regulates its own expression. Intracellular multiplication in HeLa or J774 cells, and survival in BALB/c mice of the rpoN mutant, are not affected. However 2weeks postinfection survival of rpoN mutant complemented with a multicopy plasmid containing a wild-type rpoN gene is reduced, thus suggesting that overexpression of rpoN may misregulate the expression of genes involved in this stage of infection.
Assuntos
Proteínas de Bactérias/metabolismo , Brucella abortus/metabolismo , Brucelose/microbiologia , RNA Polimerase Sigma 54/metabolismo , Sinorhizobium meliloti/metabolismo , Animais , Proteínas de Bactérias/genética , Brucella abortus/genética , Brucella abortus/crescimento & desenvolvimento , Feminino , Regulação Bacteriana da Expressão Gênica , Teste de Complementação Genética , Células HeLa , Humanos , Medicago sativa/microbiologia , Camundongos , Camundongos Endogâmicos BALB C , Mutação , RNA Polimerase Sigma 54/genética , Sinorhizobium meliloti/genéticaRESUMO
Starch synthase III (SSIII), one of the SS isoforms involved in plant starch synthesis, has been reported to play a regulatory role in the synthesis of transient starch. SSIII from Arabidopsis thaliana contains 1025 amino acid residues and has an N-terminal transit peptide for chloroplast localization which is followed by three repeated starch-binding domains (SBDs; SSIII residues 22-591) and a C-terminal catalytic domain (residues 592-1025) similar to bacterial glycogen synthase. In this work, we constructed recombinant full-length and truncated isoforms of SSIII, lacking one, two, or three SBDs, and recombinant proteins, containing three, two, or one SBD, to investigate the role of these domains in enzyme activity. Results revealed that SSIII uses preferentially ADPGlc, although UDPGlc can also be used as a sugar donor substrate. When ADPGlc was used, the presence of the SBDs confers particular properties to each isoform, increasing the apparent affinity and the V max for the oligosaccharide acceptor substrate. However, no substantial changes in the kinetic parameters for glycogen were observed when UDPGlc was the donor substrate. Under glycogen saturating conditions, the presence of SBDs increases progressively the apparent affinity and V max for ADPGlc but not for UDPGlc. Adsorption assays showed that the N-terminal region of SSIII, containing three, two, or one SBD module have increased capacity to bind starch depending on the number of SBD modules, with the D23 protein (containing the second and third SBD module) being the one that makes the greatest contribution to binding. The results presented here suggest that the N-terminal SBDs have a regulatory role, showing a starch binding capacity and modulating the catalytic properties of SSIII.
Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimologia , Sintase do Amido/metabolismo , Amido/metabolismo , Adenosina Difosfato Glucose/metabolismo , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Eletroforese em Gel de Poliacrilamida , Glicogênio/metabolismo , Cinética , Ligação Proteica , Estrutura Terciária de Proteína , Sintase do Amido/química , Sintase do Amido/genética , Especificidade por Substrato , Uridina Difosfato Glucose/metabolismoRESUMO
cDNA array technology was used to compare transcriptome profiles of Lotus japonicus roots inoculated with a Mesorhizobium loti wild-type and two mutant strains affected in cyclic beta(1-2) glucan synthesis (cgs) and in lipopolysaccharide synthesis (lpsbeta2). Expression of genes associated with the development of a fully functional nodule was significantly affected in plants inoculated with the cgs mutant. Array results also revealed that induction of marker genes for nodule development was delayed when plants were inoculated with the lpsbeta2 mutant. Quantitative real-time reverse-transcriptase polymerase chain reaction was used to quantify gene expression of a subset of genes involved in plant defense response, redox metabolism, or genes that encode for nodulins. The majority of the genes analyzed in this study were more highly expressed in roots inoculated with the wild type compared with those inoculated with the cgs mutant strain. Some of the genes exhibited a transient increase in transcript levels during intermediate steps of normal nodule development while others displayed induced expression during the final steps of nodule development. Ineffective nodules induced by the glucan mutant showed higher expression of phenylalanine ammonia lyase than wild-type nodules. Differences in expression pattern of genes involved in early recognition and signaling were observed in plants inoculated with the M. loti mutant strain affected in the synthesis of cyclic glucan.
Assuntos
Fabaceae/genética , Regulação da Expressão Gênica de Plantas , Lipopolissacarídeos/biossíntese , Rhizobium/metabolismo , Nódulos Radiculares de Plantas/crescimento & desenvolvimento , Nódulos Radiculares de Plantas/genética , beta-Glucanas/metabolismo , Fabaceae/citologia , Fabaceae/microbiologia , Perfilação da Expressão Gênica , Genes de Plantas , Cinética , Proteínas de Membrana/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos , Fenóis/metabolismo , Proteínas de Plantas/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Nódulos Radiculares de Plantas/citologia , Nódulos Radiculares de Plantas/microbiologiaRESUMO
Glycogen and starch are the major energy storage compounds in most living organisms. The metabolic pathways leading to their synthesis involve the action of several enzymes, among which glycogen synthase (GS) or starch synthase (SS) catalyze the elongation of the alpha-1,4-glucan backbone. At least five SS isoforms were described in Arabidopsis thaliana; it has been reported that the isoform III (SSIII) has a regulatory function on the synthesis of transient plant starch. The catalytic C-terminal domain of A. thaliana SSIII (SSIII-CD) was cloned and expressed. SSIII-CD fully complements the production of glycogen by an Agrobacterium tumefaciens glycogen synthase null mutant, suggesting that this truncated isoform restores in vivo the novo synthesis of bacterial glycogen. In vitro studies revealed that recombinant SSIII-CD uses with more efficiency rabbit muscle glycogen than amylopectin as primer and display a high apparent affinity for ADP-Glc. Fold class assignment methods followed by homology modeling predict a high global similarity to A. tumefaciens GS showing a fully conservation of the ADP-binding residues. On the other hand, this comparison revealed important divergences of the polysaccharide binding domain between AtGS and SSIII-CD.
Assuntos
Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimologia , Glucosiltransferases/química , Glucosiltransferases/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Sequência de Bases , Domínio Catalítico , Clonagem Molecular , Biologia Computacional , Primers do DNA , Eletroforese em Gel de Poliacrilamida , Glucosiltransferases/genética , Modelos Moleculares , Conformação Proteica , Especificidade por SubstratoRESUMO
Cyclic beta-1,2-glucans (CbetaG) are osmolyte homopolysaccharides with a cyclic beta-1,2-backbone of 17-25 glucose residues present in the periplasmic space of several bacteria. Initiation, elongation, and cyclization, the three distinctive reactions required for building the cyclic structure, are catalyzed by the same protein, the CbetaG synthase. The initiation activity catalyzes the transference of the first glucose from UDP-glucose to a yet-unidentified amino acid residue in the same protein. Elongation proceeds by the successive addition of glucose residues from UDP-glucose to the nonreducing end of the protein-linked beta-1,2-oligosaccharide intermediate. Finally, the protein-linked intermediate is cyclized, and the cyclic glucan is released from the protein. These reactions do not explain, however, the mechanism by which the number of glucose residues in the cyclic structure is controlled. We now report that control of the degree of polymerization (DP) is carried out by a beta-1,2-glucan phosphorylase present at the CbetaG synthase C-terminal domain. This last activity catalyzes the phosphorolysis of the beta-1,2-glucosidic bond at the nonreducing end of the linear protein-linked intermediate, releasing glucose 1-phosphate. The DP is thus regulated by this "length-controlling" phosphorylase activity. To our knowledge, this is the first description of a control of the DP of homopolysaccharides.
Assuntos
Bacillus/enzimologia , Glicosiltransferases/metabolismo , beta-Glucanas/metabolismo , Sequência de Aminoácidos , Glucofosfatos/metabolismo , Glicosiltransferases/genética , Dados de Sequência Molecular , Fosforilases/genética , Fosforilases/metabolismo , Polissacarídeos/metabolismoRESUMO
Brucella abortus faces iron deprivation in both nature and the host. To overcome this limitation, Brucella secretes the siderophores 2,3-dihydroxybenzoic acid and brucebactin. A Fur-like protein named Irr has previously been characterized in B. abortus; this protein is present in the alpha-2 group of Proteobacteria only, where it negatively regulates haem biosynthesis when iron is scarce. Additional evidence that Irr also regulates the synthesis of both siderophores is presented here. Transcriptional lacZ fusion and chemical determinations revealed that Irr induced the transcription of the operon involved in the synthesis of the catecholic siderophores, which were consequently secreted under conditions of iron limitation. Irr was able to bind the upstream region of the operon, as shown by electrophoretic mobility shift assay. A B. abortus irr mutant showed higher intracellular haem content, catalase activity and resistance to hydrogen peroxide than the wild-type strain. The mutation also improved the replication and survival of iron-depleted bacteria within cultured mammalian cells. Although the pathogenesis of Brucella correlates with its ability to replicate intracellularly, pathogenicity was not attenuated when assayed in a murine model.
Assuntos
Proteínas de Bactérias/metabolismo , Brucella abortus/metabolismo , Hidroxibenzoatos/metabolismo , Estresse Oxidativo , Receptor de Insulina/metabolismo , Sideróforos/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Brucella abortus/genética , Brucella abortus/crescimento & desenvolvimento , Receptor de Insulina/genéticaRESUMO
Brucella periplasmic cyclic beta-1,2-glucan plays an important role during bacterium-host interaction. Nuclear magnetic resonance spectrometry analysis, thin-layer chromatography, and DEAE-Sephadex chromatography were used to characterize Brucella abortus cyclic glucan. In the present study, we report that a fraction of B. abortus cyclic beta-1,2-glucan is substituted with succinyl residues, which confer anionic character on the cyclic beta-1,2-glucan. The oligosaccharide backbone is substituted at C-6 positions with an average of two succinyl residues per glucan molecule. This O-ester-linked succinyl residue is the only substituent of Brucella cyclic glucan. A B. abortus open reading frame (BAB1_1718) homologous to Rhodobacter sphaeroides glucan succinyltransferase (OpgC) was identified as the gene encoding the enzyme responsible for cyclic glucan modification. This gene was named cgm for cyclic glucan modifier and is highly conserved in Brucella melitensis and Brucella suis. Nucleotide sequencing revealed that B. abortus cgm consists of a 1,182-bp open reading frame coding for a predicted membrane protein of 393 amino acid residues (42.7 kDa) 39% identical to Rhodobacter sphaeroides succinyltransferase. cgm null mutants in B. abortus strains 2308 and S19 produced neutral glucans without succinyl residues, confirming the identity of this protein as the cyclic-glucan succinyltransferase enzyme. In this study, we demonstrate that succinyl substituents of cyclic beta-1,2-glucan of B. abortus are necessary for hypo-osmotic adaptation. On the other hand, intracellular multiplication and mouse spleen colonization are not affected in cgm mutants, indicating that cyclic-beta-1,2-glucan succinylation is not required for virulence and suggesting that no low-osmotic stress conditions must be overcome during infection.
Assuntos
Brucella abortus/patogenicidade , Glucanos/química , Succinatos/química , Fatores de Virulência/química , beta-Glucanas/química , Brucella abortus/genética , Configuração de Carboidratos , Sequência de Carboidratos , Cromatografia em Gel , Cromatografia por Troca Iônica , Clonagem Molecular , Primers do DNA , Escherichia coli/genética , Escherichia coli/patogenicidade , Espectroscopia de Ressonância Magnética , Modelos Moleculares , Dados de Sequência Molecular , Plasmídeos , Reação em Cadeia da Polimerase , Fatores de Virulência/genética , Fatores de Virulência/isolamento & purificação , beta-Glucanas/isolamento & purificaçãoRESUMO
Brucella abortus cyclic glucan synthase (Cgs) is a 320-kDa (2868-amino acid) polytopic integral inner membrane protein responsible for the synthesis of the virulence factor cyclic beta-1,2-glucan by a novel mechanism in which the enzyme itself acts as a protein intermediate. Cgs functions as an inverting processive beta-1,2-autoglucosyltransferase and has the three enzymatic activities required for the synthesis of the cyclic glucan: initiation, elongation, and cyclization. To gain further insight into the protein domains that are essential for the enzymatic activity, we have compared the Cgs sequence with other glycosyltransferases (GTs). This procedure allowed us to identify in the Cgs region (475-818) the widely spaced D, DxD, E/D, (Q/R)xxRW motif that is highly conserved in the active site of numerous GTs. By site-directed mutagenesis and in vitro and in vivo activity assays, we have demonstrated that most of the amino acid residues of this motif are essential for Cgs activity. These sequence and site-directed mutagenesis analyses also indicate that Cgs should be considered a bi-functional modular GT, with an N-terminal GT domain belonging to a new GT family related to GT-2 (GT-84) followed by a GH-94 glycoside hydrolase C-terminal domain. Furthermore, over-expression of inactive mutants results in wild-type (WT) production of cyclic glucan when bacteria co-express the mutant and the WT form, indicating that Cgs may function in the membrane as a monomeric enzyme. Together, these results are compatible with a single addition model by which Cgs acts in the membrane as a monomer and uses the identified motif to form a single center for substrate binding and glycosyl-transfer reaction.