Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Microb Biotechnol ; 17(1): e14396, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38243750

RESUMO

Building models is essential for understanding the functions and dynamics of microbial communities. Metabolic models built on genome-scale metabolic network reconstructions (GENREs) are especially relevant as a means to decipher the complex interactions occurring among species. Model reconstruction increasingly relies on metagenomics, which permits direct characterisation of naturally occurring communities that may contain organisms that cannot be isolated or cultured. In this review, we provide an overview of the field of metabolic modelling and its increasing reliance on and synergy with metagenomics and bioinformatics. We survey the means of assigning functions and reconstructing metabolic networks from (meta-)genomes, and present the variety and mathematical fundamentals of metabolic models that foster the understanding of microbial dynamics. We emphasise the characterisation of interactions and the scaling of model construction to large communities, two important bottlenecks in the applicability of these models. We give an overview of the current state of the art in metagenome sequencing and bioinformatics analysis, focusing on the reconstruction of genomes in microbial communities. Metagenomics benefits tremendously from third-generation sequencing, and we discuss the opportunities of long-read sequencing, strain-level characterisation and eukaryotic metagenomics. We aim at providing algorithmic and mathematical support, together with tool and application resources, that permit bridging the gap between metagenomics and metabolic modelling.


Assuntos
Metagenoma , Microbiota , Metagenômica , Análise de Sequência de DNA , Biologia Computacional
2.
Bioengineering (Basel) ; 8(3)2021 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-33669125

RESUMO

This article deals with the inclusion of microbial ecology measurements such as abundances of operational taxonomic units in bioprocess modelling. The first part presents the mathematical analysis of a model that may be framed within the class of Lotka-Volterra models fitted to experimental data in a chemostat setting where a nitrification process was operated for over 500 days. The limitations and the insights of such an approach are discussed. In the second part, the use of an optimal tracking technique (developed within the framework of control theory) for the integration of data from genetic sequencing in chemostat models is presented. The optimal tracking revisits the data used in the aforementioned chemostat setting. The resulting model is an explanatory model, not a predictive one, it is able to reconstruct the different forms of nitrogen in the reactor by using the abundances of the operational taxonomic units, providing some insights into the growth rate of microbes in a complex community.

3.
Sci Rep ; 10(1): 5323, 2020 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-32210303

RESUMO

Microbial transition state theory (MTS) offers a theoretically explicit mathematical model for substrate limited microbial growth. By considering a first order approximation of the MTS equation one recovers the well-known Monod's expression for growth, which was regarded as a purely empirical function. The harvest volume of a cell as defined in MTS theory can then be related to the affinity concept, giving a new physical interpretation to it, and a new way to determine its value. Consequences of such a relationship are discussed.


Assuntos
Bactérias/crescimento & desenvolvimento , Matemática/métodos , Modelos Biológicos , Modelos Teóricos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...