Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Toxicol Pathol ; : 1926233241259998, 2024 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-38907685

RESUMO

We previously developed a computer-assisted image analysis algorithm to detect and quantify the microscopic features of rodent progressive cardiomyopathy (PCM) in rat heart histologic sections and validated the results with a panel of five veterinary toxicologic pathologists using a multinomial logistic model. In this study, we assessed both the inter-rater and intra-rater agreement of the pathologists and compared pathologists' ratings to the artificial intelligence (AI)-predicted scores. Pathologists and the AI algorithm were presented with 500 slides of rodent heart. They quantified the amount of cardiomyopathy in each slide. A total of 200 of these slides were novel to this study, whereas 100 slides were intentionally selected for repetition from the previous study. After a washout period of more than six months, the repeated slides were examined to assess intra-rater agreement among pathologists. We found the intra-rater agreement to be substantial, with weighted Cohen's kappa values ranging from k = 0.64 to 0.80. Intra-rater variability is not a concern for the deterministic AI. The inter-rater agreement across pathologists was moderate (Cohen's kappa k = 0.56). These results demonstrate the utility of AI algorithms as a tool for pathologists to increase sensitivity and specificity for the histopathologic assessment of the heart in toxicology studies.

2.
Toxicol Pathol ; 49(4): 888-896, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33287662

RESUMO

Rodent progressive cardiomyopathy (PCM) encompasses a constellation of microscopic findings commonly seen as a spontaneous background change in rat and mouse hearts. Primary histologic features of PCM include varying degrees of cardiomyocyte degeneration/necrosis, mononuclear cell infiltration, and fibrosis. Mineralization can also occur. Cardiotoxicity may increase the incidence and severity of PCM, and toxicity-related morphologic changes can overlap with those of PCM. Consequently, sensitive and consistent detection and quantification of PCM features are needed to help differentiate spontaneous from test article-related findings. To address this, we developed a computer-assisted image analysis algorithm, facilitated by a fully convolutional network deep learning technique, to detect and quantify the microscopic features of PCM (degeneration/necrosis, fibrosis, mononuclear cell infiltration, mineralization) in rat heart histologic sections. The trained algorithm achieved high values for accuracy, intersection over union, and dice coefficient for each feature. Further, there was a strong positive correlation between the percentage area of the heart predicted to have PCM lesions by the algorithm and the median severity grade assigned by a panel of veterinary toxicologic pathologists following light microscopic evaluation. By providing objective and sensitive quantification of the microscopic features of PCM, deep learning algorithms could assist pathologists in discerning cardiotoxicity-associated changes.


Assuntos
Inteligência Artificial , Cardiomiopatias , Algoritmos , Animais , Cardiomiopatias/induzido quimicamente , Camundongos , Redes Neurais de Computação , Ratos , Roedores
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...