Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Microbiome ; 6(1): 149, 2018 08 28.
Artigo em Inglês | MEDLINE | ID: mdl-30153857

RESUMO

BACKGROUND: Biochemical and regulatory pathways have until recently been thought and modelled within one cell type, one organism and one species. This vision is being dramatically changed by the advent of whole microbiome sequencing studies, revealing the role of symbiotic microbial populations in fundamental biochemical functions. The new landscape we face requires the reconstruction of biochemical and regulatory pathways at the community level in a given environment. In order to understand how environmental factors affect the genetic material and the dynamics of the expression from one environment to another, we want to evaluate the quantity of gene protein sequences or transcripts associated to a given pathway by precisely estimating the abundance of protein domains, their weak presence or absence in environmental samples. RESULTS: MetaCLADE is a novel profile-based domain annotation pipeline based on a multi-source domain annotation strategy. It applies directly to reads and improves identification of the catalog of functions in microbiomes. MetaCLADE is applied to simulated data and to more than ten metagenomic and metatranscriptomic datasets from different environments where it outperforms InterProScan in the number of annotated domains. It is compared to the state-of-the-art non-profile-based and profile-based methods, UProC and HMM-GRASPx, showing complementary predictions to UProC. A combination of MetaCLADE and UProC improves even further the functional annotation of environmental samples. CONCLUSIONS: Learning about the functional activity of environmental microbial communities is a crucial step to understand microbial interactions and large-scale environmental impact. MetaCLADE has been explicitly designed for metagenomic and metatranscriptomic data and allows for the discovery of patterns in divergent sequences, thanks to its multi-source strategy. MetaCLADE highly improves current domain annotation methods and reaches a fine degree of accuracy in annotation of very different environments such as soil and marine ecosystems, ancient metagenomes and human tissues.


Assuntos
Bactérias/genética , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Metagenômica/métodos , Anotação de Sequência Molecular/métodos , Algoritmos , Bactérias/classificação , Bactérias/isolamento & purificação , Proteínas de Bactérias/metabolismo , Bases de Dados Genéticas , Microbiologia Ambiental , Microbioma Gastrointestinal , Humanos , Metagenoma , Domínios Proteicos
2.
Sci Rep ; 7(1): 3826, 2017 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-28630429

RESUMO

Diatoms are a fundamental microalgal phylum that thrives in turbulent environments. Despite several experimental and numerical studies, if and how diatoms may profit from turbulence is still an open question. One of the leading arguments is that turbulence favours nutrient uptake. Morphological features, such as the absence of flagella, the presence of a rigid exoskeleton and the micrometre size would support the possible passive but beneficial role of turbulence on diatoms. We demonstrate that in fact diatoms actively respond to turbulence in non-limiting nutrient conditions. TURBOGEN, a prototypic instrument to generate natural levels of microscale turbulence, was used to expose diatoms to the mechanical stimulus. Differential expression analyses, coupled with microscopy inspections, enabled us to study the morphological and transcriptional response of Chaetoceros decipiens to turbulence. Our target species responds to turbulence by activating energy storage pathways like fatty acid biosynthesis and by modifying its cell chain spectrum. Two other ecologically important species were examined and the occurrence of a morphological response was confirmed. These results challenge the view of phytoplankton as unsophisticated passive organisms.


Assuntos
Diatomáceas/crescimento & desenvolvimento , Regulação da Expressão Gênica/fisiologia , Transcriptoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...