Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Cardiothorac Surg ; 18(1): 65, 2023 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-36750898

RESUMO

BACKGROUND: Hybrid procedure with ductal stenting and bilateral pulmonary banding offers a temporary approach in high-risk neonates with complex congenital heart defects aiming biventricular repair. This procedure may also have negative impact concerning post-banding pulmonary stenosis resulting in right ventricular pressure load. METHODS: Between 2010 and 2021 we identified 5 patients with interrupted aortic arch and complex congenital heart defect who underwent hybrid procedure and staged biventricular repair ("hybrid-group"). Other 7 cases with interrupted aortic arch were corrected in the neonatal phase without hybrid procedure ("nonhybrid-group"). Detailed intra- and extracardiac features and surgical procedures were documented as well as pulmonary interventions during follow up. Pulmonary vessel size was assessed by diameter of left and right pulmonary artery in absolute and indexed values. RV pressure was evaluated invasively via catheterization. RESULTS: Survival in cases with hybrid procedure and staged biventricular repair was 91% for a follow-up time of 40.7 months (95% CI 26-55 months) and 100% in the non-hybrid-group. Postoperative results concerning left ventricular function showed normal LV dimensions and systolic function without relevant stenosis on distal aortic arch. Hybrid procedure was associated with impaired local pulmonary arterial diameter after debanding resulting in increased right ventricular pressure and need for interventions (number intervention per patient: hybrid group 1.7 ± 0.95, non-hybrid group 0.17 ± 0.41; P 0.003). CONCLUSIONS: Hybrid procedure in high-risk cases with interrupted aortic arch and staged biventricular repair shows good postoperative results with low perioperative mortality and normal left ventricular function. Due to potential risk of relevant pulmonary stenosis and right ventricular pressure load, follow up examinations must not only focus on left but also on the right heart.


Assuntos
Coartação Aórtica , Cardiopatias Congênitas , Comunicação Interventricular , Hipertensão Pulmonar , Estenose da Valva Pulmonar , Recém-Nascido , Humanos , Lactente , Artéria Pulmonar/cirurgia , Comunicação Interventricular/cirurgia , Resultado do Tratamento , Coartação Aórtica/cirurgia , Ventrículos do Coração/cirurgia
2.
J Card Fail ; 26(7): 599-609, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32147520

RESUMO

BACKGROUND: Survival of patients with congenital heart defects including increased right ventricular pressure load (ie, tetralogy of Fallot) or pulmonary hypertension is dependent on the function of the right ventricle (RV). RV remodeling has several effects with progressive transition from compensated status to heart failure. Transient receptor potential melastatin 4 (TRPM4) forms cation channels expressed in myocardium, which was shown to modulate cardiac remodeling in the left ventricle of mice. Aim of this study was to identify the role of TRPM4 for contractile function and remodeling of the RV in a rat model of right ventricular pressure load. METHODS AND RESULTS: We performed experiments with untreated rats and under monocrotaline (MCT)-induced pressure load comparing wild-type (Trpm4+/+) and TRPM4-deficient (Trpm4-/-) rats. RV function was characterized by echocardiography and contractility measurements of isolated papillary muscles. RV hypertrophy was investigated by echocardiography and by determination of hypertrophy indices. Pulmonary arterial remodeling was evaluated by echocardiography and histology. TRPM4 protein expression in RV of human, rat and mouse was detected by Western blot and quantified in rat. TRPM4 proteins were detected in RV myocardium of rat and mouse, which were not detectable in TRPM4-deficient animals. Proteins of the same size were found in RV of a pediatric patient with tetralogy of Fallot. In untreated status, Trpm4+/+ and Trpm4-/- rats showed comparable RV contractile function and dimensions. Under pressure load (42 days after MCT injection), RV hypertrophy was significantly increased in Trpm4-/- rats compared with Trpm4+/+ controls, whereas MCT-mediated alterations in cardiac contractility and pulmonary arterial remodeling were not affected by TRPM4 inactivation in rats. Finally, TRPM4 protein expression in RV was drastically reduced in MCT-treated rats, whereas left ventricle of the same animals showed no alteration in TRPM4 expression. CONCLUSIONS: Right ventricular pressure load evoked by MCT treatment in rats leads to a prominent downregulation of TRPM4 protein expression in the RV and complete deletion of TRPM4 expression aggravates right ventricular hypertrophy. Thus, therapeutic modulation of TRPM4 expression and activity might represent a novel approach to target right ventricular remodeling in patients with pulmonary hypertension or otherwise loaded RV.


Assuntos
Insuficiência Cardíaca , Canais de Cátion TRPM , Animais , Criança , Humanos , Hipertrofia Ventricular Direita , Camundongos , Monocrotalina , Ratos , Ratos Wistar , Canais de Cátion TRPM/genética , Função Ventricular Direita , Remodelação Ventricular
3.
J Vis Exp ; (103)2015 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-26436250

RESUMO

Papillary muscle isolated from adult mouse hearts can be used to study cardiac contractility during different physiological/pathological conditions. The contractile characteristics can be evaluated independently of external influences such as vascular tonus or neurohumoral status. It depicts a scientific approach between single cell measurements with isolated cardiac myocytes and in vivo studies like echocardiography. Thus, papillary muscle preparations serve as an excellent model to study cardiac physiology/pathophysiology and can be used for investigations like the modulation by pharmacological agents or the exploration of transgenic animal models. Here, we describe a method of isolating the murine left anterior papillary muscle to investigate cardiac contractility in an organ bath setup. In contrast to a muscle strip preparation isolated from the ventricular wall, the papillary muscle can be prepared in toto without damaging the muscle tissue severely. The organ bath setup consists of several temperature-controlled, gassed and electrode-equipped organ bath chambers. The isolated papillary muscle is fixed in the organ bath chamber and electrically stimulated. The evoked twitch force is recorded using a pressure transducer and parameters such as twitch force amplitude and twitch kinetics are analyzed. Different experimental protocols can be performed to investigate the calcium- and frequency-dependent contractility as well as dose-response curves of contractile agents such as catecholamines or other pharmaceuticals. Additionally, pathologic conditions like acute ischemia can be simulated.


Assuntos
Preparação de Coração Isolado/métodos , Contração Miocárdica/fisiologia , Músculos Papilares/fisiologia , Agonistas Adrenérgicos beta/farmacologia , Animais , Cálcio/metabolismo , Estimulação Elétrica , Camundongos , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/fisiologia , Músculos Papilares/efeitos dos fármacos , Músculos Papilares/metabolismo , Músculos Papilares/cirurgia , Transdução de Sinais
4.
J Mol Cell Cardiol ; 74: 307-17, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24972051

RESUMO

TRPM4 and TRPM5 proteins belong to the Transient Receptor Potential (TRP) ion channel family and form Ca(2+)-activated nonselective cation channels. Recently we showed a significant increase of Isoprenaline-induced inotropy in TRPM4-deficient (Trpm4(-/-)) mice. This is caused by increased Ca(2+) entry via L-type calcium channels due to faster action potential repolarization in Trpm4(-/-) ventricular myocytes [Mathar et al., 2013]. Here, we investigated the contribution of various steps of the ß-adrenergic signalling cascade to the augmented positive inotropic response in the absence of TRPM4, and whether the closely related TRPM5 additively contributes to this process using TRPM4/TRPM5-double deficient (Trpm4/Trpm5((-/-)2)) mice. We performed contractility measurements on isolated papillary muscles from wild type, Trpm4(-/-) and Trpm4/Trpm5((-/-)2) mice. As shown in Trpm4(-/-) mice, Isoprenaline-induced inotropy in Trpm4/Trpm5((-/-)2) papillary muscles was significantly increased compared to wild type, whereas basal, frequency- and Ca(2+)-dependent contractility was unaltered. Equivalent to Isoprenaline, activation of adenylyl cyclase using Forskolin led to a significantly increased twitch force in Trpm4(-/-) heart preparations whereas the Isoprenaline-mediated increase in cAMP level was comparable to wild type mice. Notably, the positive inotropic response evoked by phosphodiesterase inhibition with 3-isobutyl-1-methylxanthine (IBMX) was unchanged between both genotypes. Furthermore, experiments performed with increasing concentrations of IBMX after prestimulation with Forskolin and vice versa did not provide evidence that the increased ß-adrenergic positive inotropic response in TRPM4-deficient papillary muscles is due to differences in accumulation of cAMP. Compared to inhibition of phosphodiesterase, the rise of intracellular cAMP by activating adenylyl cyclase is accompanied by ATP breakdown. To test the relevance of TRPM4 during forced ATP consumption we measured contractility under ischemic conditions. Here, Trpm4(-/-) papillary muscles showed improved contractile function in comparison to wild type. Our results are consistent with the hypothesis that TRPM4 has a limiting effect on cardiac contractility specifically in ATP depleting conditions. The increased positive inotropic response in Trpm4(-/-) papillary muscles evoked by stimulation of adenylyl cyclase activity is not observed without active enhancement of ATP hydrolysis. Furthermore, the contractility of Trpm4(-/-) papillary muscles was also increased during ischemic simulation. These data underscore the potential of TRPM4 inactivation as an approach to increase inotropy in specific conditions associated with increased catecholamine levels, such as heart failure and ischemia.


Assuntos
Adenilil Ciclases/genética , Cardiotônicos/farmacologia , Isoproterenol/farmacologia , Contração Miocárdica/efeitos dos fármacos , Isquemia Miocárdica/genética , Canais de Cátion TRPM/genética , Trifosfato de Adenosina/metabolismo , Adenilil Ciclases/metabolismo , Animais , Cálcio/metabolismo , Colforsina/farmacologia , AMP Cíclico/metabolismo , Estimulação Elétrica , Regulação da Expressão Gênica , Ventrículos do Coração/efeitos dos fármacos , Ventrículos do Coração/metabolismo , Ventrículos do Coração/patologia , Masculino , Camundongos , Camundongos Knockout , Isquemia Miocárdica/metabolismo , Isquemia Miocárdica/patologia , Músculos Papilares/efeitos dos fármacos , Músculos Papilares/metabolismo , Músculos Papilares/patologia , Transdução de Sinais , Canais de Cátion TRPM/deficiência , Técnicas de Cultura de Tecidos
5.
Circ Res ; 114(2): 283-94, 2014 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-24226423

RESUMO

RATIONALE: The Trpm4 gene has recently been associated with several disorders, including cardiac conduction diseases and Brugada syndrome. Transient receptor potential member 4 (TRPM4) proteins constitute Ca2+ -activated, but Ca2+ -impermeable, nonselective cation channels and are expressed both in atrial and in ventricular cardiomyocytes. The physiological function of TRPM4 in the heart remains, however, incompletely understood. OBJECTIVE: To establish the role of TRPM4 in cardiac muscle function. METHODS AND RESULTS: We used TRPM4 knockout mice and performed patch-clamp experiments, membrane potential measurements, microfluorometry, contractility measurements, and in vivo pressure-volume loop analysis. We demonstrate that TRPM4 proteins are functionally present in mouse ventricular myocytes and are activated on Ca2+ -induced Ca2+ release. In Trpm4(-/-) mice, cardiac muscle displays an increased ß-adrenergic inotropic response both in vitro and in vivo. Measurements of action potential duration show a significantly decreased time for 50% and 90% repolarization in Trpm4(-/-) ventricular myocytes. We provide evidence that this change in action potential shape leads to an increased driving force for the L-type Ca2+ current during the action potential, which explains the altered contractility of the heart muscle. CONCLUSIONS: Our results show that functional TRPM4 proteins are novel determinants of the inotropic effect of ß-adrenergic stimulation on the ventricular heart muscle.


Assuntos
Agonistas Adrenérgicos beta/farmacologia , Cardiotônicos/farmacologia , Ventrículos do Coração/efeitos dos fármacos , Isoproterenol/farmacologia , Contração Miocárdica/efeitos dos fármacos , Miocárdio/metabolismo , Receptores Adrenérgicos beta/efeitos dos fármacos , Canais de Cátion TRPM/deficiência , Potenciais de Ação , Animais , Cálcio/metabolismo , Bloqueadores dos Canais de Cálcio/farmacologia , Canais de Cálcio Tipo L/metabolismo , Relação Dose-Resposta a Droga , Acoplamento Excitação-Contração/efeitos dos fármacos , Regulação da Expressão Gênica , Ventrículos do Coração/metabolismo , Cinética , Camundongos , Camundongos da Linhagem 129 , Camundongos Knockout , Receptores Adrenérgicos beta/metabolismo , Canais de Cátion TRPM/genética
6.
J Clin Invest ; 120(9): 3267-79, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20679729

RESUMO

Hypertension is an underlying risk factor for cardiovascular disease. Despite this, its pathogenesis remains unknown in most cases. Recently, the transient receptor potential (TRP) channel family was associated with the development of several cardiovascular diseases linked to hypertension. The melastatin TRP channels TRPM4 and TRPM5 have distinct properties within the TRP channel family: they form nonselective cation channels activated by intracellular calcium ions. Here we report the identification of TRPM4 proteins in endothelial cells, heart, kidney, and chromaffin cells from the adrenal gland, suggesting that they have a role in the cardiovascular system. Consistent with this hypothesis, Trpm4 gene deletion in mice altered long-term regulation of blood pressure toward hypertensive levels. No changes in locomotor activity, renin-angiotensin system function, electrolyte and fluid balance, vascular contractility, and cardiac contractility under basal conditions were observed. By contrast, inhibition of ganglionic transmission with either hexamethonium or prazosin abolished the difference in blood pressure between Trpm4-/- and wild-type mice. Strikingly, plasma epinephrine concentration as well as urinary excretion of catecholamine metabolites were substantially elevated in Trpm4-/- mice. In freshly isolated chromaffin cells, lack of TRPM4 was shown to cause markedly more acetylcholine-induced exocytotic release events, while neither cytosolic calcium concentration, size, nor density of vesicles were different. We therefore conclude that TRPM4 proteins limit catecholamine release from chromaffin cells and that this contributes to increased sympathetic tone and hypertension.


Assuntos
Epinefrina/sangue , Hipertensão/genética , Hipertensão/metabolismo , Canais de Cátion TRPM/fisiologia , Animais , Pressão Sanguínea , Sistema Cardiovascular/metabolismo , Células Cromafins/metabolismo , Camundongos , Camundongos Knockout , Sistema Renina-Angiotensina/fisiologia , Canais de Cátion TRPM/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...