Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Polymers (Basel) ; 14(15)2022 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-35956669

RESUMO

With the first use of ETFE foils in building structures in the 1980s at the Burgers' Zoo in Arnhem, Netherlands, the implementation of ETFE foils in roof and façade systems in large-span structures has become steadily more prominent. To safely design ETFE foil structures, their mechanical behaviour has to be fundamentally understood. Until now, several research studies have been published investigating this material's behaviour. However, the parameters influencing these plastic's mechanical behaviour, such as the strain rate or the test temperature, have only been investigated separately but not simultaneously. In this contribution, an analytical model is presented which describes the mechanical behaviour of ETFE foils under varying test temperatures and strain rates simultaneously. The material model has been checked against experimental results achieved for materials from three different international producers and two different commonly used foil thicknesses with significant differences in their mechanical responses (so that it can be assumed that the international market is represented). In the first step, uniaxial tensile tests on strip specimens were performed to describe the nonlinear and viscoelastic temperature- and strain rate-dependent material behaviour under uniaxial tension. The achieved stress-strain curves exhibited, as expected, the two commonly so-called yield points, which can be taken as separators for three different material stages: viscoelastic, viscoelastic-plastic, and viscoplastic. In the second step, by separating the uniaxial tensile response into these three stages, two interdependent functions could be derived based on the well-known Ramberg-Osgood material model to simulate the viscoelastic and viscoelastic-plastic material behaviour of ETFE foils. For this purpose, analytical functions were developed to calculate the model parameters considering the influence of the test temperature and the test speed. It can be shown that the newly developed analytical material model fits well with the experimental results. With the use of the derived nonlinear material model, design engineers can predict the material's mechanical behaviour considering the environmental conditions on site while maintaining independence from the material's supplier.

2.
Materials (Basel) ; 13(19)2020 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-32977638

RESUMO

Manifold variations of the mechanical behavior of structural woven fabrics appear in the first load cycles. Nevertheless, invariable states, i.e., mechanically saturated states, can be approached by multiple monotonous load cycle biaxial tests. In a state acceptably close to the ideal saturated state, the stress-strain paths reveal the elastic share of the initially inelastic stress-strain paths of woven fabrics. In this paper, the mechanical saturation behavior of two types of PTFE-coated woven glass fiber fabrics is examined and compared to the recently reported saturation behavior of a PVC-coated polyester fabric. With the help of the saturation test data, an extrapolation function is developed that facilitates an estimation of late cycle stiffness behavior based on measured early cycle behavior. Furthermore, the considerable impact of late cycle properties on structural analyses is shown exemplarily in the numerical simulation of a prestressed fabric structure by comparing results achieved from late and early load cycle stiffness parameters.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...