Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Phys Condens Matter ; 24(21): 216003, 2012 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-22543670

RESUMO

Neutron diffraction and electrical transport measurements have been made on the heavy rare earth metal holmium at high pressures and low temperatures in order to elucidate its transition from a paramagnetic (PM) to a helical antiferromagnetic (AFM) ordered phase as a function of pressure. The electrical resistance measurements show a change in the resistance slope as the temperature is lowered through the antiferromagnetic Néel temperature. The temperature of this antiferromagnetic transition decreases from approximately 122 K at ambient pressure at a rate of -4.9 K GPa(-1) up to a pressure of 9 GPa, whereupon the PM-to-AFM transition vanishes for higher pressures. Neutron diffraction measurements as a function of pressure at 89 and 110 K confirm the incommensurate nature of the phase transition associated with the antiferromagnetic ordering of the magnetic moments in a helical arrangement and that the ordering occurs at similar pressures as determined from the resistance results for these temperatures.


Assuntos
Hólmio/química , Difração de Nêutrons , Transporte de Elétrons , Campos Magnéticos , Teste de Materiais , Transição de Fase , Pressão
2.
J Phys Condens Matter ; 23(36): 365703, 2011 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-21865635

RESUMO

The crystal structure of EuFe(2)As(2) has been studied up to a pressure of 35 GPa and down to a temperature of 8 K using temperature dependent x-ray diffraction in a diamond anvil cell at a synchrotron source. At 4.3 GPa, we have detected a structural phase transition from a high temperature tetragonal phase with I4/mmm space group to a low temperature orthorhombic phase with Fmmm space group around 120 K. With the application of pressure at a low temperature of 10 K, the orthorhombic phase is suppressed and a phase change to a collapsed tetragonal phase with I4/mmm space group is observed at 11 GPa. This collapsed tetragonal phase is similar to the one observed at ambient temperature and pressure above 8.5 GPa. We have shown that the collapsed tetragonal phase of EuFe(2)As(2) has the same pressure-volume (P-V) equation of state at ambient temperature and at 10 K, implying that the high pressure phase of EuFe(2)As(2) has a negligible thermal expansion coefficient.

3.
J Phys Condens Matter ; 23(12): 122201, 2011 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-21389565

RESUMO

High pressure x-ray diffraction and electrical resistance measurements have been carried out on SrFe(2)As(2) to a pressure of 23 GPa and temperature of 10 K using a synchrotron source and designer diamond anvils. At ambient temperature, a phase transition from the tetragonal phase to a collapsed tetragonal (CT) phase is observed at 10 GPa under non-hydrostatic conditions. The experimental relation that T-CT transition pressure for 122 Fe-based superconductors is dependent on ambient pressure volume is affirmed. The superconducting transition temperature is observed at 32 K at 1.3 GPa and decreases rapidly with a further increase of pressure in the region where the T-CT transition occurs. Our results suggest that T(C) falls below 10 K in the pressure range of 10-18 GPa where the CT phase is expected to be stable.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...