Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Oncogene ; 39(20): 4132-4154, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32238882

RESUMO

Despite advances in the systemic treatment of patients with metastatic melanoma using immune checkpoint and tyrosine kinase inhibitors (TKI), the majority of stage IV melanoma patients eventually succumb to the disease. We have previously identified the transcription factor Sox10 as a crucial player in melanoma, yet the underlying molecular mechanisms mediating Sox10-dependent tumorigenesis remain largely uncharacterized. Here, we show that MEK and RAF inhibitors do not suppress levels of SOX10 protein in patient-derived cells in vitro, as well as in melanoma patients in vivo. In a search for pharmacological inhibitors of SOX10, we performed a mass spectrometry-based screen in human melanoma cells. Subsequent analysis revealed that SOX10 directly interacts with ß-catenin, which is a key mediator of canonical Wnt/ß-catenin signaling. We demonstrate that inhibitors of glycogen synthase kinase 3 alpha/beta (GSK3α/ß) efficiently abrogate SOX10 protein in human melanoma cells in vitro and in melanoma mouse models in vivo. The mechanism of action of GSK3-mediated SOX10 suppression is transcription-independent and relies on the presence of a proteasome degradable form of ß-catenin. Taken together, we provide evidence that activation of canonical Wnt signaling has a profound effect on melanoma growth and is able to counteract Sox10-dependent melanoma maintenance both in vitro and in vivo.


Assuntos
Regulação Neoplásica da Expressão Gênica , Melanoma Experimental/metabolismo , Proteínas de Neoplasias/metabolismo , Fatores de Transcrição SOXE/biossíntese , Via de Sinalização Wnt , Animais , Linhagem Celular Tumoral , Humanos , Melanoma Experimental/genética , Melanoma Experimental/patologia , Camundongos , Camundongos Nus , Proteínas de Neoplasias/genética , Fatores de Transcrição SOXE/genética
2.
Oncotarget ; 7(14): 18371-83, 2016 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-26943034

RESUMO

Ran Binding Protein 9 (RanBP9, also known as RanBPM) is an evolutionary conserved scaffold protein present both in the nucleus and the cytoplasm of cells whose biological functions remain elusive. We show that active ATM phosphorylates RanBP9 on at least two different residues (S181 and S603). In response to IR, RanBP9 rapidly accumulates into the nucleus of lung cancer cells, but this nuclear accumulation is prevented by ATM inhibition. RanBP9 stable silencing in three different lung cancer cell lines significantly affects the DNA Damage Response (DDR), resulting in delayed activation of key components of the cellular response to IR such as ATM itself, Chk2, γH2AX, and p53. Accordingly, abrogation of RanBP9 expression reduces homologous recombination-dependent DNA repair efficiency, causing an abnormal activation of IR-induced senescence and apoptosis. In summary, here we report that RanBP9 is a novel mediator of the cellular DDR, whose accumulation into the nucleus upon IR is dependent on ATM kinase activity. RanBP9 absence hampers the molecular mechanisms leading to efficient repair of damaged DNA, resulting in enhanced sensitivity to genotoxic stress. These findings suggest that targeting RanBP9 might enhance lung cancer cell sensitivity to genotoxic anti-neoplastic treatment.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas do Citoesqueleto/genética , Dano ao DNA , Neoplasias Pulmonares/genética , Proteínas Nucleares/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Sequência de Aminoácidos , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Linhagem Celular Tumoral , Proteínas do Citoesqueleto/metabolismo , Reparo do DNA , Células HeLa , Humanos , Neoplasias Pulmonares/metabolismo , Proteínas Nucleares/metabolismo , Fosforilação , Transdução de Sinais , Transfecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...