Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Int J Mol Sci ; 23(11)2022 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-35682814

RESUMO

The prevention of biofilm formation is crucial for the limitation of bacterial infections typically associated with postoperative infections, complications in bedridden patients, and a short-term prognosis in affected cancer patients or mechanically ventilated patients. Antimicrobial photodynamic therapy (aPDT) emerges as a promising alternative for the prevention of infections due to the inability of bacteria to become resistant to aPDT inactivation processes. The aim of this study was to demonstrate the use of a functionalized combination of Chlorin e6 and Pheophorbide as a new approach to more effective aPDT by increasing the accumulation of photosensitizers (PSs) within Escherichia coli cells. The accumulation of PSs and changes in the dry mass density of single-cell bacteria before and after aPDT treatment were investigated by digital holotomography (DHT) using the refractive index as an imaging contrast for 3D label-free live bacteria cell imaging. The results confirmed that DHT can be used in complex examination of the cell-photosensitizer interaction and characterization of the efficiency of aPDT. Furthermore, the use of Pheophorbide a as an efflux pomp inhibitor in combination with Chlorin e6 increases photosensitizers accumulation within E. coli and overcomes the limited penetration of Gram-negative cells by anionic and neutral photosensitizers.


Assuntos
Anti-Infecciosos , Infecções por Escherichia coli , Fotoquimioterapia , Antibacterianos/farmacologia , Anti-Infecciosos/farmacologia , Anti-Infecciosos/uso terapêutico , Bactérias , Escherichia coli , Humanos , Fotoquimioterapia/métodos , Fármacos Fotossensibilizantes/farmacologia
2.
Am J Pathol ; 191(12): 2147-2171, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34428422

RESUMO

Three-dimensional (3D) imaging and quantitative analysis of extracellular vesicles (EVs) remain largely unexplored, mainly because of limitations in detection techniques. In this study, EVs from patients diagnosed with colorectal cancer (CRC) and ulcerative colitis were examined. To investigate the spatial heterogeneity and 3D refractive index (RI) distribution of single EVs, a label-free digital holographic tomography technique was used at a submicrometer spatial resolution. The presented image-processing algorithms were used in quantitative analysis with digital staining and 3D visualization, the determination of the EV size distribution and extraction of fractions with different RIs. Reconstructed 3D RI distributions revealed variations in the spatial heterogeneity of EVs related to tissue specificity, such as CRC, normal colonic mucosa, and ulcerative colitis, as well as the isolation procedures used. The RI values of EVs isolated from solid tissues of frozen CRC samples were also dependent on the tumor grade and cancer cell proliferation. The simultaneous examination of cell culture models confirmed the association of the RI of EVs with the tumor grade. 3D-RI data analysis generates new perspectives with the optical, contact-free, label-free examination of the individual EVs. Depending on the specific tissue and isolation method, EVs exhibit significant spatial heterogeneity. The optical parameters of single EVs enabled their classification into two unique subgroups with different RI values.


Assuntos
Colo/diagnóstico por imagem , Doenças do Colo/diagnóstico , Vesículas Extracelulares/metabolismo , Adenocarcinoma/diagnóstico , Adenocarcinoma/metabolismo , Adenocarcinoma/patologia , Idoso , Idoso de 80 Anos ou mais , Algoritmos , Biomarcadores Tumorais/análise , Biomarcadores Tumorais/sangue , Biomarcadores Tumorais/metabolismo , Micropartículas Derivadas de Células/metabolismo , Micropartículas Derivadas de Células/patologia , Células Cultivadas , Colite Ulcerativa/diagnóstico , Colite Ulcerativa/metabolismo , Colite Ulcerativa/patologia , Colo/metabolismo , Colo/patologia , Colo/ultraestrutura , Doenças do Colo/metabolismo , Doenças do Colo/patologia , Neoplasias Colorretais/diagnóstico , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , Diagnóstico por Imagem/métodos , Vesículas Extracelulares/patologia , Feminino , Humanos , Processamento de Imagem Assistida por Computador , Masculino , Pessoa de Meia-Idade , Valor Preditivo dos Testes , Estudos Retrospectivos , Distribuição Tecidual
3.
Int J Mol Sci ; 22(10)2021 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-34064730

RESUMO

Quantifying changes in bacteria cells in the presence of antibacterial treatment is one of the main challenges facing contemporary medicine; it is a challenge that is relevant for tackling issues pertaining to bacterial biofilm formation that substantially decreases susceptibility to biocidal agents. Three-dimensional label-free imaging and quantitative analysis of bacteria-photosensitizer interactions, crucial for antimicrobial photodynamic therapy, is still limited due to the use of conventional imaging techniques. We present a new method for investigating the alterations in living cells and quantitatively analyzing the process of bacteria photodynamic inactivation. Digital holographic tomography (DHT) was used for in situ examination of the response of Escherichia coli and Staphylococcus aureus to the accumulation of the photosensitizers immobilized in the copolymer revealed by the changes in the 3D refractive index distributions of single cells. Obtained results were confirmed by confocal microscopy and statistical analysis. We demonstrated that DHT enables real-time characterization of the subcellular structures, the biophysical processes, and the induced local changes of the intracellular density in a label-free manner and at sub-micrometer spatial resolution.


Assuntos
Escherichia coli/metabolismo , Holografia/métodos , Interpretação de Imagem Assistida por Computador/métodos , Fármacos Fotossensibilizantes/metabolismo , Staphylococcus aureus/metabolismo , Tomografia de Coerência Óptica/métodos , Escherichia coli/crescimento & desenvolvimento , Processamento de Sinais Assistido por Computador , Staphylococcus aureus/crescimento & desenvolvimento
4.
Int J Mol Sci ; 23(1)2021 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-35008705

RESUMO

The worldwide increase in bacterial resistance and healthcare-associated bacterial infections pose a serious threat to human health. The antimicrobial photodynamic method reveals the opportunity for a new therapeutic approach that is based on the limited delivery of photosensitizer from the material surface. Nanoporous inorganic-organic composites were obtained by entrapment of photosensitizer Photolon in polysiloxanes that was prepared by the sol-gel method. The material was characterized by its porosity, optical properties (fluorescence and absorbance), and laser-induced antimicrobial activity against Staphylococcus epidermidis, Staphylococcus aureus, Pseudomonas aeruginosa, and Escherichia coli. The permanent encapsulation of Photolon in the silica coating and the antimicrobial efficiency was confirmed by confocal microscope and digital holotomography. The generation of free radicals from nanoporous surfaces was proved by scanning Kelvin probe microscopy. For the first time, it was confirmed that Kelvin probe microscopy can be a label-free, noncontact alternative to other conventional methods based on fluorescence or chemiluminescence probes, etc. It was confirmed that the proposed photoactive coating enables the antibacterial photodynamic effect based on free radicals released from the surface of the coating. The highest bactericidal efficiency of the proposed coating was 87.16%. This coating can selectively limit the multiplication of bacterial cells, while protecting the environment and reducing the risk of surface contamination.


Assuntos
Antibacterianos/farmacologia , Clorofilídeos/farmacologia , Radicais Livres/análise , Nanoporos , Coloração e Rotulagem , Bactérias/efeitos dos fármacos , Holografia , Umidade , Testes de Sensibilidade Microbiana , Fotoquimioterapia , Fármacos Fotossensibilizantes/farmacologia , Dióxido de Silício/química , Espectrofotometria , Aço Inoxidável/química , Tomografia
5.
Materials (Basel) ; 12(24)2019 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-31818025

RESUMO

In this study we present the porous silica-based material that can be used for in situ drug delivery, offering effective supply of active compounds regardless its water solubility. To demonstrate usability of this new material, three silica-based materials with different pore size distribution as a matrix for doping with Photolon (Ph) and Protoporphyrin IX (PPIX) photosensitizers, were prepared. These matrices can be used for coating cardiovascular stents used for treatment of the coronary artery disease and enable intravascular photodynamic therapy (PDT), which can modulate the vascular response to injury caused by stent implantation-procedure that should be thought as an alternative for drug eluting stent. The FTIR spectroscopic analysis confirmed that all studied matrices have been successfully functionalized with the target photosensitizers. Atomic force microscopy revealed that resulting photoactive matrices were very smooth, which can limit the implantation damage and reduce the risk of restenosis. No viability loss of human peripheral blood lymphocytes and no erythrocyte hemolysis upon prolonged incubations on matrices indicated good biocompatibility of designed materials. The suitability of photoactive surfaces for PDT was tested in two cell lines relevant to stent implantation: vascular endothelial cells (HUVECs) and vascular smooth muscle cells (VSMC). It was demonstrated that 2 h incubation on the silica matrices was sufficient for uptake of the encapsulated photosensitizers. Moreover, the amount of the absorbed photosensitizer was sufficient for induction of a phototoxic reaction as shown by a rise of the reactive oxygen species in photosensitized VSMC. On the other hand, limited reactive oxygen species (ROS) induction in HUVECs in our experimental set up suggests that the proposed method of PDT may be less harmful for the endothelial cells and may decrease a risk of the restenosis. Presented data clearly demonstrate that porous silica-based matrices are capable of in situ delivery of photosensitizer for PDT of VSMC.

6.
Int J Mol Sci ; 20(16)2019 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-31394775

RESUMO

BACKGROUND: Liposomes serve as delivery systems for biologically active compounds. Existing technologies inefficiently encapsulate large hydrophilic macromolecules, such as PVP-conjugated chlorin e6 (Photolon). This photoactive drug has been widely tested for therapeutic applications, including photodynamic reduction of atherosclerotic plaque. METHODS: A novel formulation of Photolon was produced using "gel hydration technology". Its pharmacokinetics was tested in Sus scrofa f. domestica. Its cellular uptake, cytotoxicity, and ability to induce a phototoxic reaction were demonstrated in J774A.1, RAW264.7 macrophages, and vascular smooth muscle (T/G HA-VSMC) as well as in vascular endothelial (HUVEC) cells. RESULTS: Developed liposomes had an average diameter of 124.7 ± 0.6 nm (polydispersity index (PDI) = 0.055) and contained >80% of Photolon). The half-life of formulation in S. scrofa was 20 min with area under the curve (AUC) equal to 14.7. The formulation was noncytotoxic in vitro and was rapidly (10 min) and efficiently accumulated by macrophages, but not T/G HA-VSMC or HUVEC. The accumulated quantity of photosensitizer was sufficient for induction of phototoxicity in J774A.1, but not in T/G HA-VSMC. CONCLUSIONS: Due to the excellent physical and pharmacokinetic properties and selectivity for macrophages, the novel liposomal formulation of Photolon is a promising therapeutic candidate for use in arteriosclerosis treatment when targeting macrophages but not accompanying vascular tissue is critical for effective and safe therapy.


Assuntos
Lipossomos , Fotoquimioterapia , Fármacos Fotossensibilizantes/química , Fármacos Fotossensibilizantes/farmacologia , Porfirinas/química , Porfirinas/farmacologia , Animais , Linhagem Celular , Clorofilídeos , Composição de Medicamentos , Humanos , Lipossomos/química , Lipossomos/ultraestrutura , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Macrófagos/patologia , Camundongos , Fotoquimioterapia/métodos , Placa Aterosclerótica/etiologia , Placa Aterosclerótica/metabolismo , Placa Aterosclerótica/patologia , Placa Aterosclerótica/terapia , Espécies Reativas de Oxigênio
7.
Colloids Surf B Biointerfaces ; 174: 587-597, 2019 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-30504039

RESUMO

We report a multistep strategy of biochemical surface modifications that resulted in the synthesis of new, effective and biocompatible intravascular implants coating with immobilized anti-CD133 antibodies, that proved to be the most effective in endothelial progenitor cells capture and reduced smooth muscle cells growth. Biomolecules were immobilized on differently functionalized surfaces. The distribution, nanostructural characteristics and intramolecular interactions of anti-CD133 molecules as well as their ability to bind EPCs was evaluated. We also tempted to build a molecular model of the CD133 protein to study antigen-antibody interactions. CD133 protein is expressed in endothelial progenitor cells (EPCs). Absence of preferential interaction site on CD133, but rather a presence of a small binding area, may be the specificity of reconnaissance sequence, thus importantly increasing the probability of CD133 protein binding. After all, regarding our molecular model, we are convinced that specific, and large enough interactions between anti-CD133 coating stent surface and CD133 present on EPCs will reduce risk of restenosis by favoring the endothelial growth. Additionally, the safety study of the vivo performance of modified titania based surface was performed using small animal models. No allergological or toxical local or systemic adverse effects of the developed coatings were noted.


Assuntos
Antígeno AC133/imunologia , Anticorpos Imobilizados/imunologia , Adesão Celular , Proliferação de Células , Células Progenitoras Endoteliais/fisiologia , Miócitos de Músculo Liso/citologia , Stents , Animais , Anticorpos Imobilizados/química , Anticorpos Monoclonais/imunologia , Células Cultivadas , Materiais Revestidos Biocompatíveis/química , Reestenose Coronária/prevenção & controle , Células Progenitoras Endoteliais/citologia , Feminino , Cobaias , Humanos , Masculino , Ratos , Ratos Wistar
8.
J Photochem Photobiol B ; 173: 333-343, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28641204

RESUMO

BACKGROUND: Contemporary medicine does not concern the issue of dosimetry in photodynamic diagnosis (PDD) but follows the photosensitizer (PS) producers recommendation. Most preclinical and clinical PDD studies indicate a considerable variation in the possibility of visualization and treatment, as e.g. in case of cervix lesions. Although some of these variations can be caused by the different histological subtypes or various tumor geometries, the issue of varying PS concentration in the tumor tissue volume is definitely an important factor. Therefore, there is a need to establish the objective and systematic PDD dosimetry protocol regarding doses of light and photosensitizers. METHODS: Four different irradiation sources investigated in PDD (literature) were used for PS excitation. The PS luminescence was examined by means of the non-imaging (spectroscopic) and imaging (wide- and narrow-field of view) techniques. The methodology for low-level intensity photoluminescence (PL) characterization and dedicated image processing algorithm for PS luminescence images analysis were proposed. Further, HeLa cells' cultures penetration by PS was studied by a confocal microscopy. RESULTS: Reducing the PS dose with the choice of proper photoexcitation conditions decreases the PDD procedure costs and the side effects, not affecting the diagnostic efficiency. We determined in vitro the minimum incubation time and photosensitizer concentration of Photolon for diagnostic purposes, for which the Photolon PL can still be observed. It was demonstrated that quantification of PS concentration, choice of proper photoexcitation source, appropriate adjustment of light dose and PS penetration of cancer cells may improve the low-level luminescence photodynamic diagnostics performance. CONCLUSIONS: Practical effectiveness of the PDD strongly depends on irradiation source parameters (bandwidth, maximum intensity, half-width) and their optimization is the main conditioning factor for low-level intensity and low-cost PDD.


Assuntos
Fotoquimioterapia , Fármacos Fotossensibilizantes/química , Ácido Aminolevulínico/química , Ácido Aminolevulínico/farmacologia , Relação Dose-Resposta a Droga , Células HeLa , Humanos , Medições Luminescentes , Imagem Óptica , Fármacos Fotossensibilizantes/farmacologia
9.
Biomol Eng ; 24(5): 425-33, 2007 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-17827060

RESUMO

Photolon is one of the new photosensitisers that has found application in photodynamic therapy (PDT). Its chemical structure has a partially reduced porphyrin moiety and its molecular structure is comparable to chlorin e(6), which can be isolated after hydrolysis of the 5-membered exocyclic beta-ketoester moiety of pheophorbide a. For this study, a Photolon doped sol-gel matrix was produced in the form of coatings deposited on silica fibers cores. The material was produced from sols prepared from the silicate precursor TEOS mixed with ethyl alcohol. The sol-gel films were prepared with factor R=20, where R denotes the solvent-to-precursor molar ratio. Hydrochloric acid was added as a catalyst in the correct proportion to ensure acid hydrolysis (pH approximately 2). The mixture was stirred at room temperature for 4h using a magnetic stirrer (speed 400 rpm). The coated fibers were examined in different environments, liquid and gaseous, at different pH values and with various zinc cation concentrations. The chemical reactions were studied by means of spectroscopic methods, whereby the fluorescence response was studied. It was demonstrated that Photolon immobilized in a sol-gel matrix is accessible for the environment and shows visible response to the external changes. Furthermore, it was observed that these reactions are reversible. These biomaterials are also examined as carriers for PDT. It was also proved that a toxic effect is observed an environment with microorganisms, meaning that doped coatings have photodynamic activity.


Assuntos
Técnicas Biossensoriais/instrumentação , Materiais Revestidos Biocompatíveis/química , Fotoquimioterapia/instrumentação , Fármacos Fotossensibilizantes/química , Protoporfirinas/química , Dióxido de Silício/química , Catálise , Clorofilídeos , Eletrodos , Géis , Ácido Clorídrico/química , Concentração de Íons de Hidrogênio , Hidrólise , Luz , Membranas Artificiais , Testes de Sensibilidade Microbiana , Fotoquímica , Fármacos Fotossensibilizantes/efeitos da radiação , Porfirinas , Povidona , Protoporfirinas/efeitos da radiação , Sensibilidade e Especificidade , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...