Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proteomics ; 4(12): 3921-32, 2004 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-15378693

RESUMO

Haptoglobin belongs to the major constituents of plasma and acts as hemoglobin-binding and acute-phase protein. Due to the occurrence of three major allelic variants and further structural modifications, the alpha chains of haptoglobin form varying spot patterns in two-dimensional gel electrophoresis (2-DE) gels, which is generally observed in differential proteome analyses using plasma or related body fluids of humans. In the present study plasma samples from 10 donors of initially unknown haptoglobin phenotype were separated by 2-DE and tryptic digests of excised haptoglobin alpha chain spots were analyzed by matrix-assisted laser desorption/ionization time of flight mass spectrometry (MALDI-TOF-MS) and MALDI-quadrupole ion trap TOF-MS. Haptoglobin alpha1S, alpha1F, as well as alpha2 chains were found to occur each with at least three structurally differing protein species: (i) the unmodified form, which corresponds to the sequence database entries; (ii) derivatives, in which asparagine at position five is deamidated to aspartic acid; and (iii) derivatives with an additional C-terminal arginine residue. These structural variants account for the most commonly observed spot patterns of haptoglobin alpha chains in Coomassie-stained gels. Additionally, a minor derivative of the haptoglobin alpha2 chain carrying both modifications, deamidation at position five and the C-terminal arginine residue, was identified. Theoretical pI values of the characterized structural variants are, consistent with their observed migration in the 2-DE gels.


Assuntos
Eletroforese em Gel Bidimensional/métodos , Haptoglobinas/química , Espectrometria de Massas/métodos , Mapeamento de Peptídeos/métodos , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Sequência de Aminoácidos , Arginina/química , Haptoglobinas/metabolismo , Humanos , Concentração de Íons de Hidrogênio , Dados de Sequência Molecular , Peptídeos/química , Estrutura Terciária de Proteína , Análise de Sequência de Proteína , Tripsina/química
2.
Proteomics ; 3(8): 1526-34, 2003 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-12923778

RESUMO

We investigated the effect of cultivation temperatures on the protein expression levels in the fourth larval stage of the postembryonic development of wild-type Caenorhabditis elegans by mass spectrometric proteome analysis. From the 64 protein spots that were investigated, 5 spots were found reproducibly differently expressed when proteome maps derived from animals kept at 15 degrees C and at 25 degrees C, respectively, were compared. Spots of heat shock proteins HSP 70 (CE18679 or CE09682) and HSP 16 (CE14249) were present only in gels from protein extracts when worms were grown at 15 degrees C. Spots of two metabolic enzymes, the isocitrate dehydrogenase (CE10345) and the aspartic proteinase (CE21681) were detected only in cultures grown at the lower temperature as well. A protein with still unknown function (CE05036) was present only in gels from worm samples grown at 25 degrees C. We show for the first time by proteome analyses that cultivation of worms at the lowest temperature of the known physiological range (15 degrees C) already triggers a (weak) stress response in wild-type animals. This work led to the identification of "internal control proteins" in the wild-type strain for further characterization of temperature-sensitive strains using a proteomics approach.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Espectrometria de Massas/métodos , Proteoma , Sequência de Aminoácidos , Animais , Eletroforese em Gel Bidimensional , Dados de Sequência Molecular , Homologia de Sequência de Aminoácidos , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...