Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 905: 166906, 2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-37689186

RESUMO

Climate change shifts tree growth phenology and dynamics in temperate forests. However, there is still little information on how warming climate changes intra-annual growth patterns and how these changes affect the productivity and carbon uptake of temperate trees. To address this knowledge gap, we used high-precision growth data from automatic dendrometers to quantify the impacts of unusually warm weather in 2022 (hot year) on growth phenology, dynamics and aboveground biomass (AGB) production in eight common temperate species (both conifers and broadleaved) in the Czech Republic. Mixed-effect models were used to investigate inter-annual changes in the start, end, and length of the growing season and intra-annual growth dynamics. We also modelled how changes in growth phenology, growth rates, and tree size affected yearly AGB production of individual trees. In the hot year, the growth started 5 days earlier, peaked 22 days earlier and ended 20 days earlier than in the climatically normal year, resulting in a shorter growing season with fewer growing days. AGB production decreased 36 % in the hot year, mainly due to fewer growing days and lower maximum growth rates, but with significant variation among tested species. The decline in AGB production in the hot year was most significant in the most productive species, which were also the species with the greatest reduction in the number of growing days. Tree size strongly enhanced AGB production, but its effect did not change with climate variation. Our findings suggest that climate change is likely to advance but also shorten the growing season of temperate trees, resulting in lower biomass production and carbon uptake. The results also indicate that the fast-growing and highly productive temperate tree species will have their growth reduced most by climate change, which will increasingly limit their high carbon sequestration potential.


Assuntos
Traqueófitas , Árvores , Florestas , Biomassa , Mudança Climática , Carbono
2.
Ecol Appl ; 33(3): e2808, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36691190

RESUMO

Most ecological studies use remote sensing to analyze broad-scale biodiversity patterns, focusing mainly on taxonomic diversity in natural landscapes. One of the most important effects of high levels of urbanization is species loss (i.e., biotic homogenization). Therefore, cost-effective and more efficient methods to monitor biological communities' distribution are essential. This study explores whether the Enhanced Vegetation Index (EVI) and the Normalized Difference Vegetation Index (NDVI) can predict multifaceted avian diversity, urban tolerance, and specialization in urban landscapes. We sampled bird communities among 15 European cities and extracted Landsat 30-meter resolution EVI and NDVI values of the pixels within a 50-m buffer of bird sample points using Google Earth Engine (32-day Landsat 8 Collection Tier 1). Mixed models were used to find the best associations of EVI and NDVI, predicting multiple avian diversity facets: Taxonomic diversity, functional diversity, phylogenetic diversity, specialization levels, and urban tolerance. A total of 113 bird species across 15 cities from 10 different European countries were detected. EVI mean was the best predictor for foraging substrate specialization. NDVI mean was the best predictor for most avian diversity facets: taxonomic diversity, functional richness and evenness, phylogenetic diversity, phylogenetic species variability, community evolutionary distinctiveness, urban tolerance, diet foraging behavior, and habitat richness specialists. Finally, EVI and NDVI standard deviation were not the best predictors for any avian diversity facets studied. Our findings expand previous knowledge about EVI and NDVI as surrogates of avian diversity at a continental scale. Considering the European Commission's proposal for a Nature Restoration Law calling for expanding green urban space areas by 2050, we propose NDVI as a proxy of multiple facets of avian diversity to efficiently monitor bird community responses to land use changes in the cities.


Assuntos
Biodiversidade , Ecossistema , Animais , Filogenia , Cidades , Urbanização , Aves/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...