Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int Immunopharmacol ; 125(Pt B): 111166, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37948861

RESUMO

The adenylyl cyclase (AC) signaling pathway is suggested to be a key regulator of immune system functions. However, specific effects of cyclic adenosine monophosphate (cAMP) on T helper (Th) cell differentiation and functions are unclear. The involvement of cAMP in the Th cell differentiation program, in particular the development of Th1, Th2, and Th17 subsets, was evaluated employing forskolin (FSK), a labdane diterpene well known as an AC activator. FSK mediated an elevation in Th1-specific markers reinforcing the Th1 cell phenotype. The Th2 differentiation was supported by FSK, though cell metabolism was negatively affected. In contrast, the Th17 immunophenotype was severely suppressed leading to the highly specific upregulation of CXCL13. The causality between FSK-elicited cAMP production and the observed reinforcement of Th2 differentiation was established by using AC inhibitor 2',5'-dideoxyadenosine, which reverted the FSK effects. Overall, an FSK-mediated cAMP increase affects Th1, Th2 and Th17 differentiation and can contribute to the identification of novel therapeutic targets for the treatment of Th cell-related pathological processes.


Assuntos
AMP Cíclico , Ativação Linfocitária , Colforsina/farmacologia , Diferenciação Celular , Células Th17
2.
Sci Rep ; 12(1): 17409, 2022 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-36257968

RESUMO

Cardiovascular diseases remain the leading cause of death worldwide; hence there is an increasing focus on developing physiologically relevant in vitro cardiovascular tissue models suitable for studying personalized medicine and pre-clinical tests. Despite recent advances, models that reproduce both tissue complexity and maturation are still limited. We have established a scaffold-free protocol to generate multicellular, beating human cardiac microtissues in vitro from hiPSCs-namely human organotypic cardiac microtissues (hOCMTs)-that show some degree of self-organization and can be cultured for long term. This is achieved by the differentiation of hiPSC in 2D monolayer culture towards cardiovascular lineage, followed by further aggregation on low-attachment culture dishes in 3D. The generated hOCMTs contain multiple cell types that physiologically compose the heart and beat without external stimuli for more than 100 days. We have shown that 3D hOCMTs display improved cardiac specification, survival and metabolic maturation as compared to standard monolayer cardiac differentiation. We also confirmed the functionality of hOCMTs by their response to cardioactive drugs in long-term culture. Furthermore, we demonstrated that they could be used to study chemotherapy-induced cardiotoxicity. Due to showing a tendency for self-organization, cellular heterogeneity, and functionality in our 3D microtissues over extended culture time, we could also confirm these constructs as human cardiac organoids (hCOs). This study could help to develop more physiologically-relevant cardiac tissue models, and represent a powerful platform for future translational research in cardiovascular biology.


Assuntos
Antineoplásicos , Fármacos Cardiovasculares , Células-Tronco Pluripotentes Induzidas , Humanos , Engenharia Tecidual/métodos , Coração/fisiologia , Diferenciação Celular/fisiologia , Fármacos Cardiovasculares/metabolismo , Antineoplásicos/metabolismo , Miócitos Cardíacos/metabolismo
3.
Biomolecules ; 11(3)2021 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-33802847

RESUMO

Melanoma phenotype plasticity underlies tumour dissemination and resistance to therapy, yet its regulation is incompletely understood. In vivo switching between a more differentiated, proliferative phenotype and a dedifferentiated, invasive phenotype is directed by the tumour microenvironment. We found that treatment of partially dedifferentiated, invasive A375M2 cells with two structurally unrelated p38 MAPK inhibitors, SB2021920 and BIRB796, induces a phenotype switch in 3D collagen, as documented by increased expression of melanocyte differentiation markers and a loss of invasive phenotype markers. The phenotype is accompanied by morphological change corresponding to amoeboid-mesenchymal transition. We performed RNA sequencing with an Illumina HiSeq platform to fully characterise transcriptome changes underlying the switch. Gene expression results obtained with RNA-seq were validated by comparing them with RT-qPCR. Transcriptomic data generated in the study will extend the present understanding of phenotype plasticity in melanoma and its contribution to invasion and metastasis.


Assuntos
Colágeno/metabolismo , Melanoma/genética , Inibidores de Proteínas Quinases/farmacologia , RNA-Seq/métodos , Microambiente Tumoral/efeitos dos fármacos , Proteínas Quinases p38 Ativadas por Mitógeno/antagonistas & inibidores , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/genética , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/genética , Perfilação da Expressão Gênica/métodos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Ontologia Genética , Humanos , Imidazóis/farmacologia , Melanoma/patologia , Naftalenos/farmacologia , Fenótipo , Pirazóis/farmacologia , Piridinas/farmacologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Microambiente Tumoral/genética , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
4.
Cell Death Dis ; 11(9): 754, 2020 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-32934219

RESUMO

The identification of the essential role of cyclin-dependent kinases (CDKs) in the control of cell division has prompted the development of small-molecule CDK inhibitors as anticancer drugs. For many of these compounds, the precise mechanism of action in individual tumor types remains unclear as they simultaneously target different classes of CDKs - enzymes controlling the cell cycle progression as well as CDKs involved in the regulation of transcription. CDK inhibitors are also capable of activating p53 tumor suppressor in tumor cells retaining wild-type p53 gene by modulating MDM2 levels and activity. In the current study, we link, for the first time, CDK activity to the overexpression of the MDM4 (MDMX) oncogene in cancer cells. Small-molecule drugs targeting the CDK9 kinase, dinaciclib, flavopiridol, roscovitine, AT-7519, SNS-032, and DRB, diminished MDM4 levels and activated p53 in A375 melanoma and MCF7 breast carcinoma cells with only a limited effect on MDM2. These results suggest that MDM4, rather than MDM2, could be the primary transcriptional target of pharmacological CDK inhibitors in the p53 pathway. CDK9 inhibitor atuveciclib downregulated MDM4 and enhanced p53 activity induced by nutlin-3a, an inhibitor of p53-MDM2 interaction, and synergized with nutlin-3a in killing A375 melanoma cells. Furthermore, we found that human pluripotent stem cell lines express significant levels of MDM4, which are also maintained by CDK9 activity. In summary, we show that CDK9 activity is essential for the maintenance of high levels of MDM4 in human cells, and drugs targeting CDK9 might restore p53 tumor suppressor function in malignancies overexpressing MDM4.


Assuntos
Neoplasias da Mama/metabolismo , Proteínas de Ciclo Celular/metabolismo , Quinase 9 Dependente de Ciclina/metabolismo , Melanoma/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Animais , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Proteínas de Ciclo Celular/biossíntese , Proteínas de Ciclo Celular/genética , Linhagem Celular Tumoral , Quinase 9 Dependente de Ciclina/antagonistas & inibidores , Sinergismo Farmacológico , Humanos , Imidazóis/farmacologia , Células MCF-7 , Melanoma/genética , Melanoma/patologia , Camundongos , Piperazinas/farmacologia , Células-Tronco Pluripotentes/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas/biossíntese , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas c-mdm2/biossíntese , Proteínas Proto-Oncogênicas c-mdm2/genética , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Roscovitina/farmacologia , Sulfonamidas/farmacologia , Transcrição Gênica , Transfecção , Triazinas/farmacologia
5.
Cancers (Basel) ; 12(6)2020 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-32531927

RESUMO

BRAF inhibitors can delay the progression of metastatic melanoma, but resistance usually emerges, leading to relapse. Drugs simultaneously targeting two or more pathways essential for cancer growth could slow or prevent the development of resistant clones. Here, we identified pyridinyl imidazole compounds SB202190, SB203580, and SB590885 as dual inhibitors of critical proliferative pathways in human melanoma cells bearing the V600E activating mutation of BRAF kinase. We found that the drugs simultaneously disrupt the BRAF V600E-driven extracellular signal-regulated kinase (ERK) mitogen-activated protein kinase (MAPK) activity and the mechanistic target of rapamycin complex 1 (mTORC1) signaling in melanoma cells. Pyridinyl imidazole compounds directly inhibit BRAF V600E kinase. Moreover, they interfere with the endolysosomal compartment, promoting the accumulation of large acidic vacuole-like vesicles and dynamic changes in mTOR signaling. A transient increase in mTORC1 activity is followed by the enrichment of the Ragulator complex protein p18/LAMTOR1 at contact sites of large vesicles and delocalization of mTOR from the lysosomes. The induced disruption of the endolysosomal pathway not only disrupts mTORC1 signaling, but also renders melanoma cells sensitive to endoplasmic reticulum (ER) stress. Our findings identify new activities of pharmacologically relevant small molecule compounds and provide a biological rationale for the development of anti-melanoma therapeutics based on the pyridinyl imidazole core.

6.
Molecules ; 24(11)2019 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-31181622

RESUMO

Tumor suppressor p53 is mutated in about 50% of cancers. Most malignant melanomas carry wild-type p53, but p53 activity is often inhibited due to overexpression of its negative regulators Mdm2 or MdmX. We performed high throughput screening of 2448 compounds on A375 cells carrying p53 activity luciferase reporter construct to reveal compounds that promote p53 activity in melanoma. Albendazole and fenbendazole, two approved and commonly used benzimidazole anthelmintics, stimulated p53 activity and were selected for further studies. The protein levels of p53 and p21 increased upon the treatment with albendazole and fenbendazole, indicating activation of the p53-p21 pathway, while the levels of Mdm2 and MdmX decreased in melanoma and breast cancer cells overexpressing these proteins. We also observed a reduction of cell viability and changes of cellular morphology corresponding to mitotic catastrophe, i.e., G2/M cell cycle arrest of large multinucleated cells with disrupted microtubules. In summary, we established a new tool for testing the impact of small molecule compounds on the activity of p53 and used it to identify the action of benzimidazoles in melanoma cells. The drugs promoted the stability and transcriptional activity of wild-type p53 via downregulation of its negative regulators Mdm2 and MdmX in cells overexpressing these proteins. The results indicate the potential for repurposing the benzimidazole anthelmintics for the treatment of cancers overexpressing p53 negative regulators.


Assuntos
Benzimidazóis/farmacologia , Fenbendazol/farmacologia , Melanoma/metabolismo , Proteínas Nucleares/metabolismo , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Albendazol/farmacologia , Proteínas de Ciclo Celular , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Regulação para Baixo , Reposicionamento de Medicamentos , Ensaios de Seleção de Medicamentos Antitumorais , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Ensaios de Triagem em Larga Escala , Humanos , Células MCF-7 , Melanoma/tratamento farmacológico
7.
Front Physiol ; 10: 390, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31024344

RESUMO

Mdm2 and MdmX are related proteins serving in the form of the Mdm2 homodimer or Mdm2/MdmX heterodimer as an E3 ubiquitin ligase for the tumor suppressor p53. The dimerization is required for the E3 activity and is mediated by the conserved RING domains present in both proteins, but only the RING domain of Mdm2 can form homodimers efficiently. We performed a systematic mutational analysis of human Mdm2, exchanging parts of the RING with the corresponding MdmX sequence, to identify the molecular determinants of this difference. Mdm2 can also promote MdmX degradation, and we identified several mutations blocking it. They were located mainly at the Mdm2/E2 interface and did not disrupt the MdmX-Mdm2 interaction. Surprisingly, some mutations of the Mdm2/E2 interface inhibited MdmX degradation, which is mediated by the Mdm2/MdmX heterodimer, but did not affect p53 degradation, mediated by the Mdm2 homodimer. Only one mutant, replacing a conserved cysteine 449 with asparagine (C449N), disrupted the ability of Mdm2 to dimerize with MdmX. When we introduced the cysteine residue into the corresponding site in MdmX, the RING domain became capable of forming dimers with other MdmX molecules in vivo, suggesting that one conserved amino acid residue in the RINGs of Mdm2 and MdmX could serve as the determinant of the differential ability of these domains to form dimers and their E3 activity. In immunoprecipitations, however, the homodimerization of MdmX could be observed only when the asparagine residue was replaced with cysteine in both RINGs. This result suggested that heterocomplexes consisting of one mutated MdmX RING with cysteine and one wild-type MdmX RING with asparagine might be less stable, despite being readily detectable in the cell-based assay. Moreover, Mdm2 C449N blocked Mdm2-MdmX heterodimerization but did not disrupt the ability of Mdm2 homodimer to promote p53 degradation, suggesting that the effect of the conserved cysteine and asparagine residues on dimerization was context-specific. Collectively, our results indicate that the effects of individual exchanges of conserved residues between Mdm2 and MdmX RING domains might be context-specific, supporting the hypothesis that Mdm2 RING homodimers and Mdm2-MdmX heterodimers may not be entirely structurally equivalent, despite their apparent similarity.

8.
Angew Chem Int Ed Engl ; 58(4): 1062-1066, 2019 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-30569600

RESUMO

Reported is the identification of the furo[3,2-b]pyridine core as a novel scaffold for potent and highly selective inhibitors of cdc-like kinases (CLKs) and efficient modulators of the Hedgehog signaling pathway. Initially, a diverse target compound set was prepared by synthetic sequences based on chemoselective metal-mediated couplings, including assembly of the furo[3,2-b]pyridine scaffold by copper-mediated oxidative cyclization. Optimization of the subseries containing 3,5-disubstituted furo[3,2-b]pyridines afforded potent, cell-active, and highly selective inhibitors of CLKs. Profiling of the kinase-inactive subset of 3,5,7-trisubstituted furo[3,2-b]pyridines revealed sub-micromolar modulators of the Hedgehog pathway.


Assuntos
Furanos/química , Proteínas Hedgehog/química , Inibidores de Proteínas Quinases/síntese química , Piridinas/química , Bibliotecas de Moléculas Pequenas/síntese química , Sítios de Ligação , Sobrevivência Celular/efeitos dos fármacos , Humanos , Concentração Inibidora 50 , Células MCF-7 , Estrutura Molecular , Ligação Proteica , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/farmacologia , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/farmacologia
9.
Hepatology ; 67(2): 636-650, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-28913935

RESUMO

Hepatocellular carcinomas (HCC) contain a subpopulation of cancer stem cells (CSCs), which exhibit stem cell-like features and are responsible for tumor relapse, metastasis, and chemoresistance. The development of effective treatments for HCC will depend on a molecular-level understanding of the specific pathways driving CSC emergence and stemness. MacroH2A1 is a variant of the histone H2A and an epigenetic regulator of stem-cell function, where it promotes differentiation and, conversely, acts as a barrier to somatic-cell reprogramming. Here, we focused on the role played by the histone variant macroH2A1 as a potential epigenetic factor promoting CSC differentiation. In human HCC sections we uncovered a significant correlation between low frequencies of macroH2A1 staining and advanced, aggressive HCC subtypes with poorly differentiated tumor phenotypes. Using HCC cell lines, we found that short hairpin RNA-mediated macroH2A1 knockdown induces acquisition of CSC-like features, including the growth of significantly larger and less differentiated tumors when injected into nude mice. MacroH2A1-depleted HCC cells also exhibited reduced proliferation, resistance to chemotherapeutic agents, and stem-like metabolic changes consistent with enhanced hypoxic responses and increased glycolysis. The loss of macroH2A1 increased expression of a panel of stemness-associated genes and drove hyperactivation of the nuclear factor kappa B p65 pathway. Blocking phosphorylation of nuclear factor kappa B p65 on Ser536 inhibited the emergence of CSC-like features in HCC cells knocked down for macroH2A1. Conclusion: The absence of histone variant macroH2A1 confers a CSC-like phenotype to HCC cells in vitro and in vivo that depends on Ser536 phosphorylation of nuclear factor kappa B p65; this pathway may hold valuable targets for the development of CSC-focused treatments for HCC. (Hepatology 2018;67:636-650).


Assuntos
Carcinoma Hepatocelular/patologia , Histonas/fisiologia , Neoplasias Hepáticas/patologia , Células-Tronco Neoplásicas/patologia , Proliferação de Células , Perfilação da Expressão Gênica , Células Hep G2 , Humanos , Fosforilação , Fator de Transcrição RelA/metabolismo
10.
EMBO Rep ; 19(2): 320-336, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29263201

RESUMO

Altered cell metabolism is a hallmark of cancer, and targeting specific metabolic nodes is considered an attractive strategy for cancer therapy. In this study, we evaluate the effects of metabolic stressors on the deregulated ERK pathway in melanoma cells bearing activating mutations of the NRAS or BRAF oncogenes. We report that metabolic stressors promote the dimerization of KSR proteins with CRAF in NRAS-mutant cells, and with oncogenic BRAF in BRAFV600E-mutant cells, thereby enhancing ERK pathway activation. Despite this similarity, the two genomic subtypes react differently when a higher level of metabolic stress is induced. In NRAS-mutant cells, the ERK pathway is even more stimulated, while it is strongly downregulated in BRAFV600E-mutant cells. We demonstrate that this is caused by the dissociation of mutant BRAF from KSR and is mediated by activated AMPK. Both types of ERK regulation nevertheless lead to cell cycle arrest. Besides studying the effects of the metabolic stressors on ERK pathway activity, we also present data suggesting that for efficient therapies of both genomic melanoma subtypes, specific metabolic targeting is necessary.


Assuntos
MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Proteínas Quinases/metabolismo , Multimerização Proteica , Estresse Fisiológico , Quinases raf/metabolismo , Proteínas 14-3-3/química , Proteínas 14-3-3/metabolismo , Pontos de Checagem do Ciclo Celular/genética , Linhagem Celular Tumoral , Ativação Enzimática , GTP Fosfo-Hidrolases/genética , GTP Fosfo-Hidrolases/metabolismo , Glucose/metabolismo , Glicólise , Humanos , Melanoma/genética , Melanoma/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Mutação , Consumo de Oxigênio , Proteínas Quinases/química , Proteínas Quinases/genética , Proteínas Recombinantes de Fusão , Quinases raf/química , Quinases raf/genética
11.
PLoS One ; 12(10): e0185801, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28973015

RESUMO

MdmX overexpression contributes to the development of cancer by inhibiting tumor suppressor p53. A switch in the alternative splicing of MdmX transcript, leading to the inclusion of exon 6, has been identified as the primary mechanism responsible for increased MdmX protein levels in human cancers, including melanoma. However, there are no approved drugs, which could translate these new findings into clinical applications. We analyzed the anti-melanoma activity of enoxacin, a fluoroquinolone antibiotic inhibiting the growth of some human cancers in vitro and in vivo by promoting miRNA maturation. We found that enoxacin inhibited the growth and viability of human melanoma cell lines much stronger than a structurally related fluoroquinolone ofloxacin, which only weakly modulates miRNA processing. A microarray analysis identified a set of miRNAs significantly dysregulated in enoxacin-treated A375 melanoma cells. They had the potential to target multiple signaling pathways required for cancer cell growth, among them the RNA splicing. Recent studies showed that interfering with cellular splicing machinery can result in MdmX downregulation in cancer cells. We, therefore, hypothesized that enoxacin could, by modulating miRNAs targeting splicing machinery, activate p53 in melanoma cells overexpressing MdmX. We found that enoxacin and ciprofloxacin, a related fluoroquinolone capable of promoting microRNA processing, but not ofloxacin, strongly activated wild type p53-dependent transcription in A375 melanoma without causing significant DNA damage. On the molecular level, the drugs promoted MdmX exon 6 skipping, leading to a dose-dependent downregulation of MdmX. Not only in melanoma, but also in MCF7 breast carcinoma and A2780 ovarian carcinoma cells overexpressing MdmX. Together, our results suggest that some clinically approved fluoroquinolones could potentially be repurposed as activators of p53 tumor suppressor in cancers overexpressing MdmX oncoprotein and that p53 activation might contribute to the previously reported activity of enoxacin towards human cancer cells.


Assuntos
Processamento Alternativo/efeitos dos fármacos , Enoxacino/farmacologia , Proteínas Proto-Oncogênicas c-mdm2/genética , Transdução de Sinais/efeitos dos fármacos , Proteína Supressora de Tumor p53/genética , Apoptose/efeitos dos fármacos , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Dano ao DNA/efeitos dos fármacos , Regulação para Baixo/efeitos dos fármacos , Feminino , Humanos , Melanoma/genética , Melanoma/metabolismo , Melanoma/patologia , Ofloxacino/farmacologia , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/metabolismo , Neoplasias Ovarianas/patologia , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Proteína Supressora de Tumor p53/metabolismo
12.
Sci Rep ; 7: 43180, 2017 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-28233861

RESUMO

The overexpression of Mdm2 has been linked to the loss of p53 tumour suppressor activity in several human cancers. Here, we present results suggesting that ubiquitin-specific peptidase 48 (USP48), a deubiquitinase that has been linked in previous reports to the NF-κB signaling pathway, is a novel Mdm2 binding partner that promotes Mdm2 stability and enhances Mdm2-mediated p53 ubiquitination and degradation. In contrast to other deubiquitinating enzymes (DUBs) that have been previously implicated in the regulation of Mdm2 protein stability, USP48 did not induce Mdm2 stabilization by significantly reducing Mdm2 ubiquitination levels. Moreover, two previously characterized USP48 mutants lacking deubiquitinase activity were also capable of efficiently stabilizing Mdm2, indicating that USP48 utilizes a non-canonical, deubiquitination-independent mechanism to promote Mdm2 oncoprotein stability. This study represents, to the best of our knowledge, the first report suggesting DUB-mediated target protein stabilization that is independent of its deubiquitinase activity. In addition, our results suggest that USP48 might represent a new mechanism of crosstalk between the NF-κB and p53 stress response pathways.


Assuntos
Regulação da Expressão Gênica , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Proteases Específicas de Ubiquitina/metabolismo , Linhagem Celular , Humanos , Processamento de Proteína Pós-Traducional , Proteólise , Proteína Supressora de Tumor p53/metabolismo , Ubiquitinação
13.
Oncotarget ; 8(65): 109319-109331, 2017 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-29312610

RESUMO

Many tyrosine kinase inhibitors (TKIs) have failed to reach human use due to insufficient activity in clinical trials. However, the failed TKIs may still benefit patients if their other kinase targets are identified by providing treatment focused on syndromes driven by these kinases. Here, we searched for novel targets of AZD1480, an inhibitor of JAK2 kinase that recently failed phase two cancer clinical trials due to a lack of activity. Twenty seven human receptor tyrosine kinases (RTKs) and 153 of their disease-associated mutants were in-cell profiled for activity in the presence of AZD1480 using a newly developed RTK plasmid library. We demonstrate that AZD1480 inhibits ALK, LTK, FGFR1-3, RET and TRKA-C kinases and uncover a physical basis of this specificity. The RTK activity profiling described here facilitates inhibitor repurposing by enabling rapid and efficient identification of novel TKI targets in cells.

14.
Toxicol In Vitro ; 37: 70-78, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27612957

RESUMO

N-((R)-1-(4-chlorophenylcarbamoyl)-2-phenylethyl)-5-chloro-2-hydroxybenzamide (Compound 6k), was recently isolated during the preparation of amino acids esters with salicylanilides. We show here that 6k disrupts the dynamics of actin cytoskeleton in human melanoma cells, affecting processes essential for the maintenance and expansion of tumours such as cell adhesion, motility, proliferation, vesicular transport, and autophagic flux. We demonstrated that inhibition of autophagy by 6k increased the sensitivity of melanoma cells to metabolic stress induced by rotenone or nutrient starvation and potentiated the anti-proliferative activity of small molecule multikinase inhibitor sorafenib. Since autophagy plays an important role in survival of cancer cells subjected to chemotherapy, the above mentioned properties are interesting from clinical point of view as 6k could promote metabolic stress within the tumour microenvironment and potentiate the effect of cytostatics in combination therapy.


Assuntos
Citoesqueleto de Actina/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Benzamidas/farmacologia , Fenilalanina/análogos & derivados , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Ciclo Celular/efeitos dos fármacos , Linhagem Celular , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Humanos , Niacinamida/análogos & derivados , Niacinamida/farmacologia , Fenilalanina/farmacologia , Compostos de Fenilureia/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Sorafenibe , Estresse Fisiológico , Cicatrização
15.
PLoS One ; 10(12): e0144753, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26656605

RESUMO

Williams-Beuren syndrome-associated transcription factor TFII-I plays a critical regulatory role in bone and neural tissue development and in immunity, in part by regulating cell proliferation in response to mitogens. Mdm2, a cellular oncogene responsible for the loss of p53 tumor suppressor activity in a significant proportion of human cancers, was identified in this study as a new binding partner for TFII-I and a negative regulator of TFII-I-mediated transcription. These findings suggest a new p53-independent mechanism by which increased Mdm2 levels found in human tumors could influence cancer cells. In addition to that, we present data indicating that TFII-I is an important cellular regulator of transcription from the immediate-early promoter of human cytomegalovirus, a promoter sequence frequently used in mammalian expression vectors, including vectors for gene therapy. Our observation that Mdm2 over-expression can decrease the ability of TFII-I to activate the CMV promoter might have implications for the efficiency of experimental gene therapy based on CMV promoter-derived vectors in cancers with Mdm2 gene amplification.


Assuntos
Regulação Neoplásica da Expressão Gênica , Proteínas Proto-Oncogênicas c-mdm2/genética , Fatores de Transcrição TFII/genética , Sítios de Ligação , Linhagem Celular Tumoral , Proliferação de Células , Citomegalovirus/genética , Citomegalovirus/metabolismo , Genes Reporter , Células HEK293 , Humanos , Luciferases/genética , Luciferases/metabolismo , Regiões Promotoras Genéticas , Ligação Proteica , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Transdução de Sinais , Fatores de Transcrição TFII/metabolismo , Transcrição Gênica , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , beta-Galactosidase/genética , beta-Galactosidase/metabolismo
16.
Cell Cycle ; 14(6): 920-30, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25590999

RESUMO

The MAGE (Melanoma-associated antigen) protein family members are structurally related to each other by a MAGE-homology domain comprised of 2 winged helix motifs WH/A and WH/B. This family specifically evolved in placental mammals although single homologs designated NSE3 (non-SMC element) exist in most eukaryotes. NSE3, together with its partner proteins NSE1 and NSE4 form a tight subcomplex of the structural maintenance of chromosomes SMC5-6 complex. Previously, we showed that interactions of the WH/B motif of the MAGE proteins with their NSE4/EID partners are evolutionarily conserved (including the MAGEA1-NSE4 interaction). In contrast, the interaction of the WH/A motif of NSE3 with NSE1 diverged in the MAGE paralogs. We hypothesized that the MAGE paralogs acquired new RING-finger-containing partners through their evolution and form MAGE complexes reminiscent of NSE1-NSE3-NSE4 trimers. In this work, we employed the yeast 2-hybrid system to screen a human RING-finger protein library against several MAGE baits. We identified a number of potential MAGE-RING interactions and confirmed several of them (MDM4, PCGF6, RNF166, TRAF6, TRIM8, TRIM31, TRIM41) in co-immunoprecipitation experiments. Among these MAGE-RING pairs, we chose to examine MAGEA1-TRIM31 in detail and showed that both WH/A and WH/B motifs of MAGEA1 bind to the coiled-coil domain of TRIM31 and that MAGEA1 interaction stimulates TRIM31 ubiquitin-ligase activity. In addition, TRIM31 directly binds to NSE4, suggesting the existence of a TRIM31-MAGEA1-NSE4 complex reminiscent of the NSE1-NSE3-NSE4 trimer. These results suggest that MAGEA1 functions as a co-factor of TRIM31 ubiquitin-ligase and that the TRIM31-MAGEA1-NSE4 complex may have evolved from an ancestral NSE1-NSE3-NSE4 complex.


Assuntos
Proteínas de Transporte/metabolismo , Complexos Multiproteicos/metabolismo , Proteínas de Neoplasias/metabolismo , Fragmentos de Peptídeos/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Sequência de Aminoácidos , Cromatografia Líquida , Células HEK293 , Humanos , Imunoprecipitação , Modelos Biológicos , Dados de Sequência Molecular , Proteínas de Neoplasias/química , Fragmentos de Peptídeos/química , Peptídeos/química , Peptídeos/metabolismo , Ligação Proteica , Multimerização Proteica , Domínios RING Finger , Espectrometria de Massas em Tandem , Proteínas com Motivo Tripartido , Técnicas do Sistema de Duplo-Híbrido , Ubiquitina-Proteína Ligases/química
17.
RNA ; 19(12): 1632-8, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24141620

RESUMO

The mechanisms of gene expression regulation by miRNAs have been extensively studied. However, the regulation of miRNA function and decay has long remained enigmatic. Only recently, 3' uridylation via LIN28A-TUT4/7 has been recognized as an essential component controlling the biogenesis of let-7 miRNAs in stem cells. Although uridylation has been generally implicated in miRNA degradation, the nuclease responsible has remained unknown. Here, we identify the Perlman syndrome-associated protein DIS3L2 as an oligo(U)-binding and processing exoribonuclease that specifically targets uridylated pre-let-7 in vivo. This study establishes DIS3L2 as the missing component of the LIN28-TUT4/7-DIS3L2 pathway required for the repression of let-7 in pluripotent cells.


Assuntos
Exorribonucleases/fisiologia , MicroRNAs/metabolismo , Precursores de RNA/metabolismo , Animais , Sequência de Bases , Células Cultivadas , Células-Tronco Embrionárias/enzimologia , Técnicas de Silenciamento de Genes , Células HEK293 , Células HeLa , Humanos , Camundongos , MicroRNAs/genética , Ligação Proteica , Precursores de RNA/genética , Estabilidade de RNA , RNA Interferente Pequeno/genética
18.
Biol Chem ; 393(7): 647-58, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22944669

RESUMO

We show that the plant quaternary benzo[c]phenanthridine alkaloid sanguilutine (SL) is a strong inducer of caspase-independent non-apoptotic death in human melanoma cells. Necrostatin-1, a specific inhibitor of necroptosis, completely reversed the cytotoxic effect of SL, suggesting that necroptosis was a predominant type of cell death induced by SL in these cells. In addition, we showed that SL can trigger an autophagic response, as confirmed by GFP-LC3 puncta formation and LC3-II accumulation. Interestingly, we observed a significant decrease in the viability of melanoma cells treated with combination of autophagy inhibitors (3-methyladenine, bafilomycin-A1 and LY294002) and SL. Our results further indicated that autophagy may serve as a pro-survival mechanism, delaying the induction of necroptosis in melanoma cells. The ability of SL to induce caspase-independent non-apoptotic cell death (necroptosis) suggests its possible therapeutic potential in the treatment of apoptosis-resistant melanoma tumours. Furthermore, SL might serve as a useful tool for studying the mechanisms of necroptosis and autophagy induction and the interplay between these two processes.


Assuntos
Antineoplásicos/farmacologia , Autofagia/efeitos dos fármacos , Benzofenantridinas/farmacologia , Melanoma/patologia , Adenina/análogos & derivados , Adenina/farmacologia , Antineoplásicos/antagonistas & inibidores , Benzofenantridinas/antagonistas & inibidores , Caspases/metabolismo , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Imidazóis/farmacologia , Indóis/farmacologia , Proteínas Associadas aos Microtúbulos/metabolismo , Necrose/induzido quimicamente , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo
19.
FEBS Lett ; 586(16): 2225-31, 2012 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-22659184

RESUMO

The exact role of the central acidic domain of Mdm2 in p53 degradation remains unclear. We therefore performed a systematic and comprehensive analysis of the acidic domain using a series of short deletions and found that only a minor part of the domain was indispensable for Mdm2-mediated p53 ubiquitylation. Moreover, we identified a short stretch of acidic amino acids required for p53 degradation but not ubiquitylation, indicating that, in addition to p53 ubiquitylation, the acidic domain might be involved in a critical post-ubiquitylation step in p53 degradation. Rather than representing a single functional domain, different parts of the acidic region perform separate functions in p53 degradation, suggesting that it might be possible to therapeutically target them independently.


Assuntos
Análise Mutacional de DNA , Proteínas Proto-Oncogênicas c-mdm2/genética , Proteínas Proto-Oncogênicas c-mdm2/fisiologia , Proteína Supressora de Tumor p53/química , Sequência de Aminoácidos , Proteínas de Ciclo Celular , Deleção de Genes , Células HEK293 , Humanos , Imunoprecipitação , Modelos Biológicos , Dados de Sequência Molecular , Proteínas Nucleares/química , Proteínas Nucleares/fisiologia , Ligação Proteica , Conformação Proteica , Estrutura Terciária de Proteína , Proteínas Proto-Oncogênicas/química , Proteínas Proto-Oncogênicas/fisiologia , Proteínas Proto-Oncogênicas c-mdm2/química , Homologia de Sequência de Aminoácidos , Proteína Supressora de Tumor p53/metabolismo , Ubiquitina/química
20.
Cell Cycle ; 11(5): 953-62, 2012 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-22333590

RESUMO

Mdm2 can mediate p53 ubiquitylation and degradation either in the form of the Mdm2 homodimer or Mdm2/MdmX heterodimer. The ubiquitin ligase activity of these complexes resides mainly in their respective RING finger domains and also requires adjacent C-terminal tails. So far, structural studies have failed to show significant differences between Mdm2 RING homodimers and Mdm2/MdmX RING heterodimers. Here, we report that not only the primary amino acid sequence, but also the length of the C-terminal tail of Mdm2 is highly conserved through evolution and plays an important role in Mdm2 activity toward p53. Mdm2 mutants with extended C termini do not ubiquitylate p53 despite being capable of forming Mdm2 homodimers through both RING-acidic domain and RING-RING interactions. All extended mutants also retained the ability to interact with MdmX, and this interaction led to reactivation of their E3 ubiquitin ligase activity. In contrast, only a subset of extended Mdm2 mutants was activated by the interaction with Mdm2 RING domain, suggesting that Mdm2 homodimers and Mdm2/MdmX heterodimers may not be structurally and functionally fully equivalent.


Assuntos
Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Sequência de Aminoácidos , Linhagem Celular Tumoral , Análise Mutacional de DNA , Dimerização , Evolução Molecular , Células HEK293 , Humanos , Proteínas Inibidoras de Apoptose/química , Proteínas Inibidoras de Apoptose/metabolismo , Dados de Sequência Molecular , Ligação Proteica , Estrutura Terciária de Proteína , Proteínas Proto-Oncogênicas c-mdm2/química , Proteínas Proto-Oncogênicas c-mdm2/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...