Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Knee Surg ; 36(7): 710-715, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34952546

RESUMO

The proximal tibia and distal femur are intimately linked with the biomechanics of the knee and they are to be considered in total knee arthroplasty (TKA). The aim of the present study was to evaluate the proximal tibial torsion (PTT) in relation to surgical epicondylar axis (SEA) in a healthy cohort and a pathological cohort affected by knee osteoarthritis (OA). We retrospectively analyzed computed tomography of OA knee of 59 patients before they underwent TKA and nonarthritic knee of 39 patients as control. Posterior condylar angle (PCAn), femoral tibial torsion (SEA-proximal tibial condyle [PTC] and SEA-PTT), PTT (PTC-PTT and posterior condylar axes [PCAx]-PTC), and distance between tibial tuberosity and the trochlear groove (TT-TG) were measured. No differences were found for gender, age, TT-TG, and PCAn angles. Statistically significant differences were found for all the other angles considered. Significant correlation was found between tibial torsion and SEA-PTT angles, between PCAx-PTC and SEA-PTC, between SEA-PTT and SEA-PTC, and between PCAx-PTC and SEA-PTT. All measures, except TT-TG and PCAn angles, showed high validity (area under the curve [AUC] > 75%) in associating with OA, with SEA-PTT displaying the highest validity with an AUC of 94.38%. This is the first study to find significant differences in terms of proximal tibia geometry and anatomy between nonarthritic and OA knees. From our results, we reported that OA group was characterized by a greater internal rotation of tibia with respect to SEAs compared with control group. Since the design of the study cannot evaluate a cause-effect relationship, further studies need to be performed to assess the potential implications of these anatomic differences for knee OA and arthroplasty surgeries.


Assuntos
Artroplastia do Joelho , Doenças Ósseas , Osteoartrite do Joelho , Humanos , Tíbia/diagnóstico por imagem , Tíbia/cirurgia , Tíbia/anatomia & histologia , Osteoartrite do Joelho/diagnóstico por imagem , Osteoartrite do Joelho/cirurgia , Osteoartrite do Joelho/patologia , Estudos Retrospectivos , Articulação do Joelho/diagnóstico por imagem , Articulação do Joelho/cirurgia , Articulação do Joelho/patologia , Artroplastia do Joelho/métodos , Fêmur/cirurgia , Doenças Ósseas/cirurgia , Osso e Ossos/cirurgia
2.
Joints ; 6(2): 116-121, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30051109

RESUMO

Purpose The objective of this study was to investigate the ability of elastosonography (USE) in the identification of different grades of muscular injuries, comparing its effectiveness with traditional ultrasound (US) survey and by relating the results to the clinical classification of muscular pain. Methods In the period between August 2014 and May 2016, we conducted a prospective cohort study on a population of 34 young male professional athletes belonging to the same under-17 football club (Ancona 1905). Injuries were recorded according to location, type, mechanism, recurrence, and whether they occurred with or without contact. Muscle pain was classified, after a physical examination, according to the classification of Mueller-Wohlfahrt et al. All athletes were evaluated by musculoskeletal US and USE in hours following the trauma/onset of pain. Results Seventy injuries were documented among 19 players. Muscle/tendon injuries were the most common type of injury (49%). USE showed areas of edema in nine lesions that were negative at the US examination and previously classified as fatigue-induced muscle disorders. These nine players took more time to return to physical activity compared with others with injuries classified into the same group, but negative at USE evaluation. Conclusion USE is a valuable aid in the diagnosis and prognostic evaluation of muscle injury, as it detects pathologic changes that are not visible with the B-mode US. Level of Evidence This is a Level III, observational cohort study.

3.
Radiol Med ; 120(11): 1031-42, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25851081

RESUMO

Patello-femoral malalignment (PFM) is a common cause of disability often related to patello-femoral syndrome (PFS). Several causes have been taken into account; a proper diagnosis requires instrumental imaging and a methodical evaluation of different parameters. The aim of the present study was to identify the most reliable parameters for measuring patello-femoral and inferior limb alignment by CT. Twenty randomly selected patients suffering from PFS for a total of 40 knees were studied by static CT scans in order to assess patellar tilt, patellar displacement, patellar and trochlear morphology and inferior limb alignment. All known parameters were measured; the variability of the measurements between observers was evaluated by boxplots, Pearson's correlation coefficients, and infraclass correlation coefficient [ICC(2,1)] based on a two-way random effect model. Bland-Altman mean differences and 95 % limits of agreement were computed for each pair of measurements. Patellar tilt parameters appeared equally reliable; patellar displacement is best measured with BoTot that showed an ICC of 0.889; morphology is best measured with WibergTot, with an ICC of 0.862; lastly, for the inferior limb alignment parameters' analysis, FTV outperformed the others in terms of reliability. The present study allowed us to select a limited number of reliable parameters in the evaluation of patello-femoral and inferior limb alignment. The use of these parameters may also result in a more reliable comparison of studies on PFM and in a better evaluation of the treatment outcomes.


Assuntos
Artropatias/diagnóstico por imagem , Articulação Patelofemoral/diagnóstico por imagem , Tomografia Computadorizada por Raios X , Adulto , Feminino , Humanos , Reprodutibilidade dos Testes
4.
Joints ; 1(4): 180-6, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-25606531

RESUMO

Skeletal muscle injuries are common causes of severe long-term pain and physical disability, accounting for up to 55% of all sports injuries. The phases of the healing process after direct or indirect muscle injury are complex but clearly defined processes comprising well-coordinated steps: degeneration, inflammation, regeneration, and fibrosis. Despite this frequent occurrence and the presence of a body of data on the pathophysiology of muscle injuries, none of the treatment strategies adopted to date have been shown to be really effective in strictly controlled trials. Most current muscle injury treatments are based on limited experimental and clinical data and/or were only empirically tested. Platelet-rich plasma (PRP) is a promising alternative approach based on the ability of autologous growth factors (GFs) to accelerate tissue healing, improve muscular regeneration, increase neovascularization and reduce fibrosis, allowing rapid recovery after muscle lesions. Thus, further experimental studies that include the quantification of specific GFs released by PRP, as well as additional data on angiogenesis, myogenesis and functional recovery are needed to ultimately validate the hypothesis of PRP efficacy in the treatment of muscle lesions and open the way for its wide clinical application.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...