Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanomaterials (Basel) ; 13(3)2023 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-36770384

RESUMO

Increasing heat transfer is an important part of industrial, mechanical, electrical, thermal, and biological sciences. The aim of this study is to increase the thermal competency of a conventional fluid by using a ternary hybrid nanofluid. A magnetic field and thermal radiation are used to further improve the thermal conductivity of the base fluid. Irreversibility is analyzed under the influence of the embedded parameters. The basic equations for the ternary hybrid nanofluids are transformed from Partial Differential Equations (PDEs) to Ordinary Differential Equations (ODEs) using the similarity concept. The Marangoni convection idea is used in the mathematical model for the temperature difference between the two media: the surface and fluid. The achieved results are provided and discussed. The results show that ternary hybrid nanofluids are more suitable as heat-transmitted conductors than conventional fluids.

2.
J Appl Biomater Funct Mater ; 20: 22808000221120329, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36036196

RESUMO

Entropy is the measure of the amount of energy in any physical system that is not accessible for the useful work, which causes a decrease in a system's thermodynamic efficiency. The idea of entropy generation analysis plays a vital role in characterizing the evolution of thermal processes and minimizing the impending loss of available mechanical power in thermo-fluid systems from an analytical perspective. It has a wide range of applications in biological, information, and engineering systems, such as transportation, telecommunication, and rate processes. The analysis of the entropy generation of axisymmetric magnetohydrodynamic hybrid nanofluid (SiO2-MoS2)/water flow induced by rotating and stretching cylinder in the presence of heat radiation, ohmic heating, and the magnetic field is focus of this study. Thermal energy transport of hybrid nanofluids is performed by applying the Maxwell model. Heat transport is carried out by using convective boundary condition. The dimensionless ordinary differential equations are acquired by similarity transformations. The numerical solution for these differential equations is obtained by the bvp4c program in MATLAB. A comparison between nanofluid and hybrid nanofluid is made for flow field, temperature, and entropy generation. Comparison of nanofluid flow with hybrid nanofluid flow exhibits a higher rate of heat transmission, while entropy generation exhibits the opposite behavior. It is observed that the flow and heat distribution increase as the solid volume fraction's value grows. An increase in entropy is indicated by augmentation in the Brinkman number and temperature ratio parameter, but the Bejan number shows a declining trend. Furthermore, outcomes of the Nusselt number for hybrid nanofluid and nanofluid are calculated for various parameters. It is noticed that the Nusselt number is reduced for enlarging the magnetic field and Eckert number. The axial and azimuthal wall stress parameters are declined by augmenting the Reynolds number.


Assuntos
Hidrodinâmica , Nanoestruturas , Entropia , Nanotecnologia , Água
3.
Brief Bioinform ; 23(3)2022 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-35262658

RESUMO

B-cell epitopes have the capability to recognize and attach to the surface of antigen receptors to stimulate the immune system against pathogens. Identification of B-cell epitopes from antigens has a great significance in several biomedical and biotechnological applications, provides support in the development of therapeutics, design and development of an epitope-based vaccine and antibody production. However, the identification of epitopes with experimental mapping approaches is a challenging job and usually requires extensive laboratory efforts. However, considerable efforts have been placed for the identification of epitopes using computational methods in the recent past but deprived of considerable achievements. In this study, we present LBCEPred, a python-based web-tool (http://lbcepred.pythonanywhere.com/), build with random forest classifier and statistical moment-based descriptors to predict the B-cell epitopes from the protein sequences. LBECPred outperforms all sequence-based available models that are currently in use for the B-cell epitopes prediction, with 0.868 accuracy value and 0.934 area under the curve. Moreover, the prediction performance of proposed models compared to other state-of-the-art models is 56.3% higher on average for Mathews Correlation Coefficient. LBCEPred is easy to use tool even for novice users and has also shown the models stability and reliability, thus we believe in its significant contribution to the research community and the area of bioinformatics.


Assuntos
Biologia Computacional , Epitopos de Linfócito B , Sequência de Aminoácidos , Biologia Computacional/métodos , Aprendizado de Máquina , Reprodutibilidade dos Testes
4.
Sci Rep ; 11(1): 21767, 2021 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-34741132

RESUMO

Proteins are a vital component of cells that perform physiological functions to ensure smooth operations of bodily functions. Identification of a protein's function involves a detailed understanding of the structure of proteins. Stress proteins are essential mediators of several responses to cellular stress and are categorized based on their structural characteristics. These proteins are found to be conserved across many eukaryotic and prokaryotic linkages and demonstrate varied crucial functional activities inside a cell. The in-vivo, ex vivo, and in-vitro identification of stress proteins are a time-consuming and costly task. This study is aimed at the identification of stress protein sequences with the aid of mathematical modelling and machine learning methods to supplement the aforementioned wet lab methods. The model developed using Random Forest showed remarkable results with 91.1% accuracy while models based on neural network and support vector machine showed 87.7% and 47.0% accuracy, respectively. Based on evaluation results it was concluded that random-forest based classifier surpassed all other predictors and is suitable for use in practical applications for the identification of stress proteins. Live web server is available at http://biopred.org/stressprotiens , while the webserver code available is at https://github.com/abdullah5naveed/SRP_WebServer.git.


Assuntos
Aprendizado de Máquina , Modelos Estatísticos , Proteínas/análise , Estresse Fisiológico , Software
5.
Anal Biochem ; 633: 114385, 2021 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-34571005

RESUMO

N4-methylcytosine (4 mC) is an important epigenetic modification that occurs enzymatically by the action of DNA methyltransferases. 4 mC sites exist in prokaryotes and eukaryotes while playing a vital role in regulating gene expression, DNA replication, and cell cycle. The efficient and accurate prediction of 4 mC sites has a significant role in the insight of 4 mC biological properties and functions. Therefore, a sequence-based predictor is proposed, namely 4 mC-RF, for identifying 4 mC sites through the integration of statistical moments along with position, and composition-dependent features. Relative and absolute position-based features are computed to extract optimal features. A popular machine learning classifier Random Forest was used for training the model. Validation results were obtained through rigorous processes of self-consistency, 10-fold cross-validation, Independent set testing, and Jackknife yielding 95.1%, 95.2%, 97.0%, and 94.7% accuracies, respectively. Our proposed model depicts the highest prediction accuracies as compared to existing models. Subsequently, the developed 4 mC-RF model was constructed into a web server. A significant and more accurate predictor of 4 mC Methylcytosine sites helps experimental scientists to gather faster, efficient, and cost-effective results.


Assuntos
Citosina/análogos & derivados , Aprendizado de Máquina , Citosina/química , Citosina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...