Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Food Chem ; 318: 126453, 2020 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-32143128

RESUMO

Colorful fruits conveying astringent beverages providing well documented health-benefits may present clarification, turbidity and sedimentation problems. Hydraulic pressing whole 'Wonderful' pomegranates and ultrafiltration followed by high temperature short-time pasteurization was used to mimic the dominant U.S. commercial juicing protocol, delivering not-from-concentrate juices, stored at 4 and 25 °C for 3 months. A goal was to avoid expensive and complicated clarification and fining steps. Data were subjected to an analysis of variance and principal components analysis. Changes in quality attributes, organic acids and anthocyanidins are presented. Hydraulic pressing, ultrafiltration and initial pasteurization had minor effects on color parameters, organic acids and anthocyanidins. There were no significant temperature, time or factorial effects for all color parameters during storage of the not-from-concentrate pasteurized juices. However, there were significant time- and temperature-effect decreases in organic acids and anthocyanidins. This is the first report on quality attributes in ultrafiltered, pasteurized and stored not-from-concentrate 'Wonderful' pomegranate juice.


Assuntos
Qualidade dos Alimentos , Indústria de Processamento de Alimentos/métodos , Sucos de Frutas e Vegetais , Punica granatum , Antocianinas/análise , Cor , Armazenamento de Alimentos , Sucos de Frutas e Vegetais/análise , Concentração de Íons de Hidrogênio , Pasteurização
2.
Nanotechnology ; 28(42): 425702, 2017 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-28770809

RESUMO

A procedure to quantitatively analyse the relationship between the wetting layer (WL) and the quantum dots (QDs) as a whole in a statistical way is proposed. As we will show in the manuscript, it allows determining, not only the proportion of deposited InAs held in the WL, but also the average In content inside the QDs. First, the amount of InAs deposited is measured for calibration in three different WL structures without QDs by two methodologies: strain mappings in high-resolution transmission electron microscopy images and compositional mappings with ChemiSTEM x-ray energy spectrometry. The area under the average profiles obtained by both methodologies emerges as the best parameter to quantify the amount of InAs in the WL, in agreement with high-resolution x-ray diffraction results. Second, the effect of three different GaAs capping layer (CL) growth rates on the decomposition of the QDs is evaluated. The CL growth rate has a strong influence on the QD volume as well as the WL characteristics. Slower CL growth rates produce an In enrichment of the WL if compared to faster ones, together with a diminution of the QD height. In addition, assuming that the QD density does not change with the different CL growth rates, an estimation of the average In content inside the QDs is given. The high Ga/In intermixing during the decomposition of buried QDs does not only trigger a reduction of the QD height, but above all, a higher impoverishment of the In content inside the QDs, therefore modifying the two most important parameters that determine the optical properties of these structures.

3.
Sci Rep ; 7(1): 4012, 2017 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-28638150

RESUMO

Multi-junction solar cells made by assembling semiconductor materials with different bandgap energies have hold the record conversion efficiencies for many years and are currently approaching 50%. Theoretical efficiency limits make use of optimum designs with the right lattice constant-bandgap energy combination, which requires a 1.0-1.15 eV material lattice-matched to GaAs/Ge. Nevertheless, the lack of suitable semiconductor materials is hindering the achievement of the predicted efficiencies, since the only candidates were up to now complex quaternary and quinary alloys with inherent epitaxial growth problems that degrade carrier dynamics. Here we show how the use of strain-balanced GaAsSb/GaAsN superlattices might solve this problem. We demonstrate that the spatial separation of Sb and N atoms avoids the ubiquitous growth problems and improves crystal quality. Moreover, these new structures allow for additional control of the effective bandgap through the period thickness and provide a type-II band alignment with long carrier lifetimes. All this leads to a strong enhancement of the external quantum efficiency under photovoltaic conditions with respect to bulk layers of equivalent thickness. Our results show that GaAsSb/GaAsN superlattices with short periods are the ideal (pseudo)material to be integrated in new GaAs/Ge-based multi-junction solar cells that could approach the theoretical efficiency limit.

4.
Nanoscale Res Lett ; 12(1): 356, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28525952

RESUMO

As promising candidates for solar cell and photodetection applications in the range 1.0-1.16 eV, the growth of dilute nitride GaAsSbN alloys lattice matched to GaAs is studied. With this aim, we have taken advantage of the temperature gradient in the molecular beam epitaxy reactor to analyse the impact of temperature on the incorporation of Sb and N species according to the wafer radial composition gradients. The results from the combination of X-ray diffraction (XRD) and energy-dispersive X-ray spectroscopies (EDS) show an opposite rate of incorporation between N and Sb as we move away from the centre of the wafer. A competitive behaviour between Sb and N in order to occupy the group-V position is observed that depends on the growth rate and the substrate temperature. The optical properties obtained by photoluminescence are discussed in the frame of the double-band anticrossing model. The growth conditions define two sets of different parameters for the energy level and the coupling interaction potential of N, which must be taken into account in the search for the optimum compositions 1-1.15-eV photonic applications.

5.
Nanotechnology ; 27(12): 125703, 2016 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-26891164

RESUMO

The effect of the capping process on the morphology of InAs/GaAs quantum dots (QDs) by using different GaAs-based capping layers (CLs), ranging from strain reduction layers to strain compensating layers, has been studied by transmission microscopic techniques. For this, we have measured simultaneously the height and diameter in buried and uncapped QDs covering populations of hundreds of QDs that are statistically reliable. First, the uncapped QD population evolves in all cases from a pyramidal shape into a more homogenous distribution of buried QDs with a spherical-dome shape, despite the different mechanisms implicated in the QD capping. Second, the shape of the buried QDs depends only on the final QD size, where the radius of curvature is function of the base diameter independently of the CL composition and growth conditions. An asymmetric evolution of the QDs' morphology takes place, in which the QD height and base diameter are modified in the amount required to adopt a similar stable shape characterized by a averaged aspect ratio of 0.21. Our results contradict the traditional model of QD material redistribution from the apex to the base and point to a different universal behavior of the overgrowth processes in self-organized InAs QDs.

6.
J Microsc ; 262(1): 50-8, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26501744

RESUMO

Super-resolution (SR) software-based techniques aim at generating a final image by combining several noisy frames with lower resolution from the same scene. A comparative study on high-resolution high-angle annular dark field images of InAs/GaAs QDs has been carried out in order to evaluate the performance of the SR technique. The obtained SR images present enhanced resolution and higher signal-to-noise (SNR) ratio and sharpness regarding the experimental images. In addition, SR is also applied in the field of strain analysis using digital image processing applications such as geometrical phase analysis and peak pairs analysis. The precision of the strain mappings can be improved when SR methodologies are applied to experimental images.

7.
Food Chem ; 181: 354-64, 2015 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-25794761

RESUMO

Colorful antioxidant-rich fruits often convey astringency and sourness that juice consumers may not appreciate. We assessed properties in juices from a collection of California-grown pomegranate from the National Clonal Germplasm Repository. The goal was to evaluate overall differences in germplasm with quality traits classified as sweet, sweet-sour and sour. Previous relationships noted in sweet and sour cultivar attributes were observed. Wonderful generally clustered with sweet-sour and sour cultivars. Sweet low acid cultivars occasionally clustered closely with Wonderful which is hard to rationalize. The dominant compounds were 3-hexenol and 1-hexanol which allowed separation of Kara Gul, Haku-botan and Wonderful. Aldehyde and terpene content can be used to characterize cultivars. The study represents the first data on variation in juice qualities in different sweet, sweet-sour and sour cultivars, grown in California, compared with Wonderful. Data may help the juice industry better select raw juice materials in order to ultimately satisfy consumers.


Assuntos
Fenômenos Químicos , Frutas/química , Lythraceae/química , Odorantes/análise , Compostos Orgânicos Voláteis/análise , Aldeídos/análise , Antocianinas/análise , Antioxidantes/análise , California , Ácido Cítrico/análise , Cor , Comportamento do Consumidor , Hexanóis/análise , Humanos , Concentração de Íons de Hidrogênio , Análise Multivariada , Paladar , Terpenos/análise
8.
Nanotechnology ; 25(44): 445501, 2014 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-25325146

RESUMO

A detailed analysis of the impact of illumination on the electrical response of In0.5Ga0.5As surface nanostructures is carried out as a function of different relative humidity conditions. The importance of the surface-to-volume ratio for sensing applications is once more highlighted. From dark-to-photo conditions, the sheet resistance (SR) of a three-dimensional In0.5Ga0.5As nanostructure decays two orders of magnitude compared with that of a two-dimensional nanostructure. The electrical response is found to be vulnerable to the energy of the incident light and the external conditions. Illuminating with high energy light translates into an SR reduction of one order of magnitude under humid atmospheres, whereas it remains nearly unchanged under dry environments. Conversely, lighting with energy below the bulk energy bandgap, shows a negligible effect on the electrical properties regardless the local moisture. Both illumination and humidity are therefore needed for sensing. Photoexcited carriers can only contribute to conductivity if surface states are inactive due to water physisorption. The strong dependence of the electrical response on the environment makes these nanostructures very suitable for the development of highly sensitive and efficient sensing devices.

9.
Nanotechnology ; 25(25): 255202, 2014 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-24897432

RESUMO

We report on the growth and microstructure analysis of high Cd content ZnCdO/ZnO multiple quantum wells (MQW) within a nanowire. Heterostructures consisting of ten wells with widths from 0.7 to 10 nm are demonstrated, and show photoluminescence emissions ranging from 3.03 to 1.97 eV. The wells with thicknesses ≦̸2 nm have high radiative efficiencies compared to the thickest ones, consistent with the presence of quantum confinement. However, a nanometric analysis of the Cd profile along the heterostructures shows the presence of Cd diffusion from the ZnCdO well to the ZnO barrier. This phenomenon modifies the band structure and the optical properties of the heterostructure, and is considered in order to correctly identify quantum effects in the ZnCdO/ZnO MQWs.

10.
ACS Appl Mater Interfaces ; 6(9): 6191-5, 2014 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-24764178

RESUMO

The impact of the environment on the electrical properties of uncapped In0.5Ga0.5As nanostructures is studied as a function of different atmospheres for sensing applications. Electrical response from surface quantum dots (QD) shows a strong dependence on the atmosphere, in contrast to the response of 2D nanostructures. The sheet resistance drops by 99% from vacuum to air, and decreases more than one order of magnitude when relative humidity changes from 0 to 70%. The adsorption of water molecules onto the QD surface improves the conductivity likely by reducing the density of surface states acting as carrier traps, which enhances electron transport.

11.
Nanotechnology ; 19(44): 445601, 2008 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-21832733

RESUMO

The growth mechanism of stacked InAs/InP(001) quantum wires (QWRs) is studied by combining an atomic-scale cross-sectional scanning tunnelling microscopy analysis with in situ and in real-time stress measurements along the [110] direction (sensitive to stress relaxation during QWR formation). QWRs in stacked layers grow by a non-Stranski-Krastanov (SK) process which involves the production of extra InAs by strain-enhanced As/P exchange and a strong strain driven mass transport. Despite the different growth mechanism of the QWR between the first and following layers of the stack, the QWRs maintain on average the same shape and composition in all the layers of the stack, revealing the high stability of this QWR configuration.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...