Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plant J ; 102(3): 631-642, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31823436

RESUMO

Many plant genomes display high levels of repetitive sequences. The assembly of these complex genomes using short high-throughput sequence reads is still a challenging task. Underestimation or disregard of repeat complexity in these datasets can easily misguide downstream analysis. Detection of repetitive regions by k-mer counting methods has proved to be reliable. Easy-to-use applications utilizing k-mer counting are in high demand, especially in the domain of plants. We present Kmasker plants, a tool that uses k-mer count information as an assistant throughout the analytical workflow of genome data that is provided as a command-line and web-based solution. Beside its core competence to screen and mask repetitive sequences, we have integrated features that enable comparative studies between different cultivars or closely related species and methods that estimate target specificity of guide RNAs for application of site-directed mutagenesis using Cas9 endonuclease. In addition, we have set up a web service for Kmasker plants that maintains pre-computed indices for 10 of the economically most important cultivated plants. Source code for Kmasker plants has been made publically available at https://github.com/tschmutzer/kmasker. The web service is accessible at https://kmasker.ipk-gatersleben.de.


Assuntos
Genoma de Planta/genética , Algoritmos , Edição de Genes , Genômica , RNA Guia de Cinetoplastídeos/genética , Análise de Sequência de DNA , Software
2.
Sci Rep ; 9(1): 10932, 2019 07 29.
Artigo em Inglês | MEDLINE | ID: mdl-31358887

RESUMO

Site-directed methods for the generation of genetic diversity are essential tools in the field of directed enzyme evolution. The Golden Gate cloning technique has been proven to be an efficient tool for a variety of cloning setups. The utilization of restriction enzymes which cut outside of their recognition domain allows the assembly of multiple gene fragments obtained by PCR amplification without altering the open reading frame of the reconstituted gene. We have developed a protocol, termed Golden Mutagenesis that allows the rapid, straightforward, reliable and inexpensive construction of mutagenesis libraries. One to five amino acid positions within a coding sequence could be altered simultaneously using a protocol which can be performed within one day. To facilitate the implementation of this technique, a software library and web application for automated primer design and for the graphical evaluation of the randomization success based on the sequencing results was developed. This allows facile primer design and application of Golden Mutagenesis also for laboratories, which are not specialized in molecular biology.


Assuntos
Primers do DNA/genética , Mutagênese , Análise de Sequência de DNA/métodos , Software , Animais , Primers do DNA/química , Primers do DNA/normas , Humanos , Análise de Sequência de DNA/normas
3.
Sci Data ; 2: 150072, 2015 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-26647166

RESUMO

Brassica napus (oilseed rape, canola) is one of the world's most important sources of vegetable oil for human nutrition and biofuel, and also a model species for studies investigating the evolutionary consequences of polyploidisation. Strong bottlenecks during its recent origin from interspecific hybridisation, and subsequently through intensive artificial selection, have severely depleted the genetic diversity available for breeding. On the other hand, high-throughput genome profiling technologies today provide unprecedented scope to identify, characterise and utilise genetic diversity in primary and secondary crop gene pools. Such methods also enable implementation of genomic selection strategies to accelerate breeding progress. The key prerequisite is availability of high-quality sequence data and identification of high-quality, genome-wide sequence polymorphisms representing relevant gene pools. We present comprehensive genome resequencing data from a panel of 52 highly diverse natural and synthetic B. napus accessions, along with a stringently selected panel of 4.3 million high-confidence, genome-wide SNPs. The data is of great interest for genomics-assisted breeding and for evolutionary studies on the origins and consequences in allopolyploidisation in plants.


Assuntos
Genoma de Planta , Brassica napus/genética , Cruzamento , Mapeamento Cromossômico , Sequenciamento de Nucleotídeos em Larga Escala , Polimorfismo Genético , Especificidade da Espécie
4.
PLoS One ; 10(7): e0132120, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26151830

RESUMO

A major goal of maize genomic research is to identify sequence polymorphisms responsible for phenotypic variation in traits of economic importance. Large-scale detection of sequence variation is critical for linking genes, or genomic regions, to phenotypes. However, due to its size and complexity, it remains expensive to generate whole genome sequences of sufficient coverage for divergent maize lines, even with access to next generation sequencing (NGS) technology. Because methods involving reduction of genome complexity, such as genotyping-by-sequencing (GBS), assess only a limited fraction of sequence variation, targeted sequencing of selected genomic loci offers an attractive alternative. We therefore designed a sequence capture assay to target 29 Mb genomic regions and surveyed a total of 4,648 genes possibly affecting biomass production in 21 diverse inbred maize lines (7 flints, 14 dents). Captured and enriched genomic DNA was sequenced using the 454 NGS platform to 19.6-fold average depth coverage, and a broad evaluation of read alignment and variant calling methods was performed to select optimal procedures for variant discovery. Sequence alignment with the B73 reference and de novo assembly identified 383,145 putative single nucleotide polymorphisms (SNPs), of which 42,685 were non-synonymous alterations and 7,139 caused frameshifts. Presence/absence variation (PAV) of genes was also detected. We found that substantial sequence variation exists among genomic regions targeted in this study, which was particularly evident within coding regions. This diversification has the potential to broaden functional diversity and generate phenotypic variation that may lead to new adaptations and the modification of important agronomic traits. Further, annotated SNPs identified here will serve as useful genetic tools and as candidates in searches for phenotype-altering DNA variation. In summary, we demonstrated that sequencing of captured DNA is a powerful approach for variant discovery in maize genes.


Assuntos
Biomassa , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Proteínas de Plantas/genética , Polimorfismo Genético , Zea mays/genética , Variação Genética , Genoma de Planta/genética , Genótipo , Endogamia , Fenótipo , Filogenia , Proteínas de Plantas/metabolismo , Polimorfismo de Nucleotídeo Único , Zea mays/classificação , Zea mays/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...