Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-38702282

RESUMO

INTRODUCTION: The construction and results of a multiple-reader multiple-case prostate MRI study are described and reported to illustrate recommendations for how to standardize artificial intelligence (AI) prostate studies per the review constituting Part I1. METHODS: Our previously reported approach was applied to review and report an IRB approved, HIPAA compliant multiple-reader multiple-case clinical study of 150 bi-parametric prostate MRI studies across 9 readers, measuring physician performance both with and without the use of the recently FDA cleared CADe/CADx software ProstatID. RESULTS: Unassisted reader AUC values ranged from 0.418 - 0.759, with AI assisted AUC values ranging from 0.507 - 0.787. This represented a statistically significant AUC improvement of 0.045 (α = 0.05). A free-response ROC (FROC) analysis similarly demonstrated a statistically significant increase in θ from 0.405 to 0.453 (α = 0.05). The standalone performance of ProstatID performed across all prostate tissues demonstrated an AUC of 0.929, while the standalone lesion level performance of ProstatID at all biopsied locations achieved an AUC of 0.710. CONCLUSION: This study applies and illustrates suggested reporting and standardization methods for prostate AI studies that will make it easier to understand, evaluate and compare between AI studies. Providing radiologists with the ProstatID CADe/CADx software significantly increased diagnostic performance as assessed by both ROC and free-response ROC metrics. Such algorithms have the potential to improve radiologist performance in the detection and localization of clinically significant prostate cancer.

2.
Artigo em Inglês | MEDLINE | ID: mdl-38658286

RESUMO

MRI has firmly established itself as a mainstay for the detection, staging and surveillance of prostate cancer. Despite its success, prostate MRI continues to suffer from poor inter-reader variability and a low positive predictive value. The recent emergence of Artificial Intelligence (AI) to potentially improve diagnostic performance shows great potential. Understanding and interpreting the AI landscape as well as ever-increasing research literature, however, is difficult. This is in part due to widely varying study design and reporting techniques. This paper aims to address this need by first outlining the different types of AI used for the detection and diagnosis of prostate cancer, next deciphering how data collection methods, statistical analysis metrics (such as ROC and FROC analysis) and end points/outcomes (lesion detection vs. case diagnosis) affect the performance and limit the ability to compare between studies. Finally, this work explores the need for appropriately enriched investigational datasets and proper ground truth, and provides guidance on how to best conduct AI prostate MRI studies. Published in parallel, a clinical study applying this suggested study design was applied to review and report a multiple-reader multiple-case clinical study of 150 bi-parametric prostate MRI studies across nine readers, measuring physician performance both with and without the use of a recently FDA cleared Artificial Intelligence software.1.

3.
Tomography ; 6(2): 65-76, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32548282

RESUMO

Quantitative imaging biomarkers (QIBs) provide medical image-derived intensity, texture, shape, and size features that may help characterize cancerous tumors and predict clinical outcomes. Successful clinical translation of QIBs depends on the robustness of their measurements. Biomarkers derived from positron emission tomography images are prone to measurement errors owing to differences in image processing factors such as the tumor segmentation method used to define volumes of interest over which to calculate QIBs. We illustrate a new Bayesian statistical approach to characterize the robustness of QIBs to different processing factors. Study data consist of 22 QIBs measured on 47 head and neck tumors in 10 positron emission tomography/computed tomography scans segmented manually and with semiautomated methods used by 7 institutional members of the NCI Quantitative Imaging Network. QIB performance is estimated and compared across institutions with respect to measurement errors and power to recover statistical associations with clinical outcomes. Analysis findings summarize the performance impact of different segmentation methods used by Quantitative Imaging Network members. Robustness of some advanced biomarkers was found to be similar to conventional markers, such as maximum standardized uptake value. Such similarities support current pursuits to better characterize disease and predict outcomes by developing QIBs that use more imaging information and are robust to different processing factors. Nevertheless, to ensure reproducibility of QIB measurements and measures of association with clinical outcomes, errors owing to segmentation methods need to be reduced.


Assuntos
Fluordesoxiglucose F18 , Neoplasias de Cabeça e Pescoço , Tomografia por Emissão de Pósitrons , Teorema de Bayes , Biomarcadores Tumorais , Neoplasias de Cabeça e Pescoço/diagnóstico por imagem , Humanos , Reprodutibilidade dos Testes , Tomografia Computadorizada por Raios X
4.
PLoS One ; 14(4): e0215465, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31002689

RESUMO

INTRODUCTION: 18 F-fluorodeoxyglucose (FDG) positron emission tomography (PET) is now a standard diagnostic imaging test performed in patients with head and neck cancer for staging, re-staging, radiotherapy planning, and outcome assessment. Currently, quantitative analysis of FDG PET scans is limited to simple metrics like maximum standardized uptake value, metabolic tumor volume, or total lesion glycolysis, which have limited predictive value. The goal of this work was to assess the predictive potential of new (i.e., nonstandard) quantitative imaging features on head and neck cancer outcome. METHODS: This retrospective study analyzed fifty-eight pre- and post-treatment FDG PET scans of patients with head and neck squamous cell cancer to calculate five standard and seventeen new features at baseline and post-treatment. Cox survival regression was used to assess the predictive potential of each quantitative imaging feature on disease-free survival. RESULTS: Analysis showed that the post-treatment change of the average tracer uptake in the rim background region immediately adjacent to the tumor normalized by uptake in the liver represents a novel PET feature that is associated with disease-free survival (HR 1.95; 95% CI 1.27, 2.99) and has good discriminative performance (c index 0.791). CONCLUSION: The reported findings define a promising new direction for quantitative imaging biomarker research in head and neck squamous cell cancer and highlight the potential role of new radiomics features in oncology decision making as part of precision medicine.


Assuntos
Carcinoma de Células Escamosas/diagnóstico por imagem , Fluordesoxiglucose F18 , Neoplasias de Cabeça e Pescoço/diagnóstico por imagem , Tomografia por Emissão de Pósitrons/métodos , Adulto , Idoso , Idoso de 80 Anos ou mais , Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas/terapia , Quimiorradioterapia , Feminino , Neoplasias de Cabeça e Pescoço/metabolismo , Neoplasias de Cabeça e Pescoço/terapia , Humanos , Estimativa de Kaplan-Meier , Masculino , Pessoa de Meia-Idade , Avaliação de Resultados em Cuidados de Saúde/métodos , Avaliação de Resultados em Cuidados de Saúde/estatística & dados numéricos , Estudos Retrospectivos , Adulto Jovem
5.
Tomography ; 5(1): 161-169, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30854454

RESUMO

Radiomics is an image analysis approach for extracting large amounts of quantitative information from medical images using a variety of computational methods. Our goal was to evaluate the utility of radiomic feature analysis from 18F-fluorothymidine positron emission tomography (FLT PET) obtained at baseline in prediction of treatment response in patients with head and neck cancer. Thirty patients with advanced-stage oropharyngeal or laryngeal cancer, treated with definitive chemoradiation therapy, underwent FLT PET imaging before treatment. In total, 377 radiomic features of FLT uptake and feature variants were extracted from volumes of interest; these features variants were defined by either the primary tumor or the total lesion burden, which consisted of the primary tumor and all FLT-avid nodes. Feature variants included normalized measurements of uptake, which were calculated by dividing lesion uptake values by the mean uptake value in the bone marrow. Feature reduction was performed using clustering to remove redundancy, leaving 172 representative features. Effects of these features on progression-free survival were modeled with Cox regression and P-values corrected for multiple comparisons. In total, 9 features were considered significant. Our results suggest that smaller, more homogenous lesions at baseline were associated with better prognosis. In addition, features extracted from total lesion burden had a higher concordance index than primary tumor features for 8 of the 9 significant features. Furthermore, total lesion burden features showed lower interobserver variability.


Assuntos
Neoplasias de Cabeça e Pescoço/diagnóstico por imagem , Neoplasias de Cabeça e Pescoço/terapia , Carcinoma de Células Escamosas de Cabeça e Pescoço/diagnóstico por imagem , Carcinoma de Células Escamosas de Cabeça e Pescoço/terapia , Adulto , Idoso , Quimiorradioterapia/métodos , Didesoxinucleosídeos , Feminino , Neoplasias de Cabeça e Pescoço/patologia , Humanos , Interpretação de Imagem Assistida por Computador/métodos , Masculino , Pessoa de Meia-Idade , Estadiamento de Neoplasias , Variações Dependentes do Observador , Tomografia por Emissão de Pósitrons/métodos , Prognóstico , Estudos Prospectivos , Compostos Radiofarmacêuticos , Carcinoma de Células Escamosas de Cabeça e Pescoço/patologia , Resultado do Tratamento
6.
Med Phys ; 45(1): 258-276, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29091269

RESUMO

PURPOSE: Quality control plays an increasingly important role in quantitative PET imaging and is typically performed using phantoms. The purpose of this work was to develop and validate a fully automated analysis method for two common PET/CT quality assurance phantoms: the NEMA NU-2 IQ and SNMMI/CTN oncology phantom. The algorithm was designed to only utilize the PET scan to enable the analysis of phantoms with thin-walled inserts. METHODS: We introduce a model-based method for automated analysis of phantoms with spherical inserts. Models are first constructed for each type of phantom to be analyzed. A robust insert detection algorithm uses the model to locate all inserts inside the phantom. First, candidates for inserts are detected using a scale-space detection approach. Second, candidates are given an initial label using a score-based optimization algorithm. Third, a robust model fitting step aligns the phantom model to the initial labeling and fixes incorrect labels. Finally, the detected insert locations are refined and measurements are taken for each insert and several background regions. In addition, an approach for automated selection of NEMA and CTN phantom models is presented. The method was evaluated on a diverse set of 15 NEMA and 20 CTN phantom PET/CT scans. NEMA phantoms were filled with radioactive tracer solution at 9.7:1 activity ratio over background, and CTN phantoms were filled with 4:1 and 2:1 activity ratio over background. For quantitative evaluation, an independent reference standard was generated by two experts using PET/CT scans of the phantoms. In addition, the automated approach was compared against manual analysis, which represents the current clinical standard approach, of the PET phantom scans by four experts. RESULTS: The automated analysis method successfully detected and measured all inserts in all test phantom scans. It is a deterministic algorithm (zero variability), and the insert detection RMS error (i.e., bias) was 0.97, 1.12, and 1.48 mm for phantom activity ratios 9.7:1, 4:1, and 2:1, respectively. For all phantoms and at all contrast ratios, the average RMS error was found to be significantly lower for the proposed automated method compared to the manual analysis of the phantom scans. The uptake measurements produced by the automated method showed high correlation with the independent reference standard (R2 ≥ 0.9987). In addition, the average computing time for the automated method was 30.6 s and was found to be significantly lower (P ≪ 0.001) compared to manual analysis (mean: 247.8 s). CONCLUSIONS: The proposed automated approach was found to have less error when measured against the independent reference than the manual approach. It can be easily adapted to other phantoms with spherical inserts. In addition, it eliminates inter- and intraoperator variability in PET phantom analysis and is significantly more time efficient, and therefore, represents a promising approach to facilitate and simplify PET standardization and harmonization efforts.


Assuntos
Algoritmos , Fluordesoxiglucose F18 , Reconhecimento Automatizado de Padrão/métodos , Imagens de Fantasmas , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada/instrumentação , Compostos Radiofarmacêuticos , Humanos
7.
Med Phys ; 44(2): 479-496, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28205306

RESUMO

PURPOSE: Radiomics utilizes a large number of image-derived features for quantifying tumor characteristics that can in turn be correlated with response and prognosis. Unfortunately, extraction and analysis of such image-based features is subject to measurement variability and bias. The challenge for radiomics is particularly acute in Positron Emission Tomography (PET) where limited resolution, a high noise component related to the limited stochastic nature of the raw data, and the wide variety of reconstruction options confound quantitative feature metrics. Extracted feature quality is also affected by tumor segmentation methods used to define regions over which to calculate features, making it challenging to produce consistent radiomics analysis results across multiple institutions that use different segmentation algorithms in their PET image analysis. Understanding each element contributing to these inconsistencies in quantitative image feature and metric generation is paramount for ultimate utilization of these methods in multi-institutional trials and clinical oncology decision making. METHODS: To assess segmentation quality and consistency at the multi-institutional level, we conducted a study of seven institutional members of the National Cancer Institute Quantitative Imaging Network. For the study, members were asked to segment a common set of phantom PET scans acquired over a range of imaging conditions as well as a second set of head and neck cancer (HNC) PET scans. Segmentations were generated at each institution using their preferred approach. In addition, participants were asked to repeat segmentations with a time interval between initial and repeat segmentation. This procedure resulted in overall 806 phantom insert and 641 lesion segmentations. Subsequently, the volume was computed from the segmentations and compared to the corresponding reference volume by means of statistical analysis. RESULTS: On the two test sets (phantom and HNC PET scans), the performance of the seven segmentation approaches was as follows. On the phantom test set, the mean relative volume errors ranged from 29.9 to 87.8% of the ground truth reference volumes, and the repeat difference for each institution ranged between -36.4 to 39.9%. On the HNC test set, the mean relative volume error ranged between -50.5 to 701.5%, and the repeat difference for each institution ranged between -37.7 to 31.5%. In addition, performance measures per phantom insert/lesion size categories are given in the paper. On phantom data, regression analysis resulted in coefficient of variation (CV) components of 42.5% for scanners, 26.8% for institutional approaches, 21.1% for repeated segmentations, 14.3% for relative contrasts, 5.3% for count statistics (acquisition times), and 0.0% for repeated scans. Analysis showed that the CV components for approaches and repeated segmentations were significantly larger on the HNC test set with increases by 112.7% and 102.4%, respectively. CONCLUSION: Analysis results underline the importance of PET scanner reconstruction harmonization and imaging protocol standardization for quantification of lesion volumes. In addition, to enable a distributed multi-site analysis of FDG PET images, harmonization of analysis approaches and operator training in combination with highly automated segmentation methods seems to be advisable. Future work will focus on quantifying the impact of segmentation variation on radiomics system performance.


Assuntos
Fluordesoxiglucose F18 , Imageamento Tridimensional/métodos , Imagens de Fantasmas , Tomografia por Emissão de Pósitrons/métodos , Compostos Radiofarmacêuticos , Conjuntos de Dados como Assunto , Desenho de Equipamento , Neoplasias de Cabeça e Pescoço/diagnóstico por imagem , Humanos , Imageamento Tridimensional/instrumentação , Reconhecimento Automatizado de Padrão/métodos , Tomografia por Emissão de Pósitrons/instrumentação , Análise de Regressão , Reprodutibilidade dos Testes , Software , Carga Tumoral
8.
Med Phys ; 43(6): 2948-2964, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27277044

RESUMO

PURPOSE: The purpose of this work was to develop, validate, and compare a highly computer-aided method for the segmentation of hot lesions in head and neck 18F-FDG PET scans. METHODS: A semiautomated segmentation method was developed, which transforms the segmentation problem into a graph-based optimization problem. For this purpose, a graph structure around a user-provided approximate lesion centerpoint is constructed and a suitable cost function is derived based on local image statistics. To handle frequently occurring situations that are ambiguous (e.g., lesions adjacent to each other versus lesion with inhomogeneous uptake), several segmentation modes are introduced that adapt the behavior of the base algorithm accordingly. In addition, the authors present approaches for the efficient interactive local and global refinement of initial segmentations that are based on the "just-enough-interaction" principle. For method validation, 60 PET/CT scans from 59 different subjects with 230 head and neck lesions were utilized. All patients had squamous cell carcinoma of the head and neck. A detailed comparison with the current clinically relevant standard manual segmentation approach was performed based on 2760 segmentations produced by three experts. RESULTS: Segmentation accuracy measured by the Dice coefficient of the proposed semiautomated and standard manual segmentation approach was 0.766 and 0.764, respectively. This difference was not statistically significant (p = 0.2145). However, the intra- and interoperator standard deviations were significantly lower for the semiautomated method. In addition, the proposed method was found to be significantly faster and resulted in significantly higher intra- and interoperator segmentation agreement when compared to the manual segmentation approach. CONCLUSIONS: Lack of consistency in tumor definition is a critical barrier for radiation treatment targeting as well as for response assessment in clinical trials and in clinical oncology decision-making. The properties of the authors approach make it well suited for applications in image-guided radiation oncology, response assessment, or treatment outcome prediction.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...