Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J AOAC Int ; 105(4): 1105-1125, 2022 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-35238337

RESUMO

BACKGROUND: The PathogenDx family of assays uses microarray technology to simultaneously detect the presence of bacterial and fungal pathogens in food products, environmental surfaces, and cannabis products. OBJECTIVE: The Detectx Combined assay was validated for the detection of Aspergillus, (Aspergillus flavus, Aspergillus fumigatus, Aspergillus niger, and Aspergillus terreus), Salmonella, and a broad range of STEC (stx1 and/or 2) species. The validation consisted of two matrix studies in dried hemp flower and dried cannabis flower (>0.3% delta-9 tetrahydrocannabinol) flower, product consistency, stability, robustness, and inclusivity and exclusivity for two targets: Aspergillus and STEC. METHOD: The PathogenDx Detectx Combined assay was evaluated with 30 replicates in each matrix and confirmed according to the instructions outlined in this study. RESULTS: Results of the validation study met the requirements of AOAC Standard Method Performance Requirement (SMPR®) 2020.002 and 2020.012. In the inclusivity and exclusivity study, all target isolates (Aspergillus and STEC) were correctly detected. For the exclusivity study, 26 out of 30 Aspergillus and 30 out of 30 STEC non-target strains were correctly excluded. In the matrix study, the PathogenDx Detectx Combined assay showed no significant statistical differences between confirmed results for dried hemp and cannabis flower. Robustness testing indicated that small changes to the method parameters did not impact the performance of the assay. Stability and consistency studies verified that the assay's shelf-life claims were appropriate, and manufacturing of the assay was consistent. CONCLUSIONS: The validation study indicated that the PathogenDx DetectX Combined assay was successful in detection of the new target analytes (Aspergillus flavus, Aspergillus fumigatus, Aspergillus niger, and Aspergillus terreus and STEC containing stx1 and/or 2) and could successfully recover these organisms and Salmonella from dried hemp flower and dried cannabis flower (>0.3% delta-9 tetrahydrocannabinol). HIGHLIGHTS: The PathogenDx DetectX Combined Assay will be the first PTM approved multiplex assay for Aspergillus, E. coli and Salmonella that does not require an enrichment step.


Assuntos
Cannabis , Escherichia coli Shiga Toxigênica , Aspergillus , Dronabinol , Flores , Microbiologia de Alimentos , Salmonella
2.
Front Cardiovasc Med ; 8: 633212, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33665212

RESUMO

Diffuse alveolar hemorrhage (DAH) is one of the most serious clinical complications of systemic lupus erythematosus (SLE). The prevalence of DAH is reported to range from 1 to 5%, but while DAH is considered a rare complication there is a reported 50-80% mortality. There is at present no proven effective treatment for DAH and the therapeutics that have been tested have significant side effects. There is a clear necessity to discover new drugs to improve outcomes in DAH. Serine protease inhibitors, serpins, regulate thrombotic and thrombolytic protease cascades. We are investigating a Myxomavirus derived immune modulating serpin, Serp-1, as a new class of immune modulating therapeutics for vasculopathy and lung hemorrhage. Serp-1 has proven efficacy in models of herpes virus-induced arterial inflammation (vasculitis) and lung hemorrhage and has also proved safe in a clinical trial in patients with unstable coronary syndromes and stent implant. Here, we examine Serp-1, both as a native secreted protein expressed by CHO cells and as a polyethylene glycol modified (PEGylated) variant (Serp-1m5), for potential therapy in DAH. DAH was induced by intraperitoneal (IP) injection of pristane in C57BL/6J (B6) mice. Mice were treated with 100 ng/g bodyweight of either Serp-1 as native 55 kDa secreted glycoprotein, or as Serp-1m5, or saline controls after inducing DAH. Treatments were repeated daily for 14 days (6 mice/group). Serp-1 partially and Serp-1m5 significantly reduced pristane-induced DAH when compared with saline as assessed by gross pathology and H&E staining (Serp-1, p = 0.2172; Serp-1m5, p = 0.0252). Both Serp-1m5 and Serp-1 treatment reduced perivascular inflammation and reduced M1 macrophage (Serp-1, p = 0.0350; Serp-1m5, p = 0.0053), hemosiderin-laden macrophage (Serp-1, p = 0.0370; Serp-1m5, p = 0.0424) invasion, and complement C5b/9 staining. Extracellular urokinase-type plasminogen activator receptor positive (uPAR+) clusters were significantly reduced (Serp-1, p = 0.0172; Serp-1m5, p = 0.0025). Serp-1m5 also increased intact uPAR+ alveoli in the lung (p = 0.0091). In conclusion, Serp-1m5 significantly reduces lung damage and hemorrhage in a pristane model of SLE DAH, providing a new potential therapeutic approach.

3.
Cancer Res ; 78(21): 6159-6170, 2018 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-30154146

RESUMO

Human papillomavirus subtype 16 (HPV16) is the primary cause of an increasing number of head and neck squamous cell carcinomas (HNSCC), providing strong rationale for T-cell immune therapies against HPV+ HNSCC. Here we assess immunogenicity of HPV16-specific CD8+ T cells (CTL) and characterize HPV-specific mechanisms of T-cell dysfunction. We identified 16 strong and 29 moderately immunogenic CTL-epitopes from HPV16 E2, E6, and E7 antigens restricted by 12 common HLA class I alleles. E2-specific CTL-reactivity was higher in patients with HPV+ HNSCC than in healthy controls (>3-fold; P = 0.026). Patient-derived E2, E6, and E7 peripheral CTLs exhibited heterogeneity in dysfunctional phenotypes. Immunogenomic analyses of 119 HNSCC transcriptomes revealed high T-cell infiltration and dysfunction in HPV+ HNSCC and correlation of HPV antigen expression with T-cell exhaustion gene signatures. Indoleamine 2,3-dioxygenase (IDO-1) was strongly expressed in HPV+ HNSCC versus HPV- HNSCC (P = 0.001) and correlated with E7 expression (R 2 = 0.84; P = 0.033). Combination treatment with PD-1 blockade and IDO-1 inhibition overcame profound CTL-dysfunction, enhancing HPV+ HNSCC sensitivity to CTL-cytotoxicity in vitro (up to 10-fold in E7-CTLs, P = 0.011). Our findings implicate mechanisms of T-cell escape in HPV+ HNSCC, wherein high tumoral HPV-antigen load results in high expression of immune dysfunction genes on tumor cells (e.g., IDO-1), and dysfunction of HPV-specific CTLs (e.g., E7, E2-CTLs). The HPV16 CTL-epitopes identified in this study, in combination with blockade of HPV+ HNSCC-specific PD-1/IDO-1 checkpoints, may be useful for targeted immunotherapy.Significance: This study evaluates the HPV antigen T-cell immunogenicity role of inhibitory receptors and other exhaustion markers in the cytotoxic function of HPV antigen-specific CTLs and identifies combined inhibition of PD-1/IDO-1 as a strategy to enhance CTL targeting of HPV+ HNSCC. Cancer Res; 78(21); 6159-70. ©2018 AACR.


Assuntos
Linfócitos T CD8-Positivos/citologia , Neoplasias de Cabeça e Pescoço/metabolismo , Papillomavirus Humano 16/imunologia , Idoso , Alelos , Mapeamento de Epitopos , Epitopos/imunologia , Neoplasias de Cabeça e Pescoço/virologia , Antígenos de Histocompatibilidade Classe I/metabolismo , Humanos , Indolamina-Pirrol 2,3,-Dioxigenase/metabolismo , Leucócitos Mononucleares/citologia , Pessoa de Meia-Idade , Proteínas E7 de Papillomavirus/imunologia , Infecções por Papillomavirus/imunologia , Fenótipo , Linfócitos T Citotóxicos/citologia
4.
Nat Commun ; 7: 10751, 2016 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-26916619

RESUMO

Recent high-throughput studies revealed recurrent RUNX1 mutations in breast cancer, specifically in oestrogen receptor-positive (ER(+)) tumours. However, mechanisms underlying the implied RUNX1-mediated tumour suppression remain elusive. Here, by depleting mammary epithelial cells of RUNX1 in vivo and in vitro, we demonstrate combinatorial regulation of AXIN1 by RUNX1 and oestrogen. RUNX1 and ER occupy adjacent elements in AXIN1's second intron, and RUNX1 antagonizes oestrogen-mediated AXIN1 suppression. Accordingly, RNA-seq and immunohistochemical analyses demonstrate an ER-dependent correlation between RUNX1 and AXIN1 in tumour biopsies. RUNX1 loss in ER(+) mammary epithelial cells increases ß-catenin, deregulates mitosis and stimulates cell proliferation and expression of stem cell markers. However, it does not stimulate LEF/TCF, c-Myc or CCND1, and it does not accelerate G1/S cell cycle phase transition. Finally, RUNX1 loss-mediated deregulation of ß-catenin and mitosis is ameliorated by AXIN1 stabilization in vitro, highlighting AXIN1 as a potential target for the management of ER(+) breast cancer.


Assuntos
Proteína Axina/genética , Neoplasias da Mama/genética , Subunidade alfa 2 de Fator de Ligação ao Core/genética , Estrogênios/metabolismo , Regulação Neoplásica da Expressão Gênica , Receptores de Estrogênio/genética , beta Catenina/metabolismo , Animais , Proteína Axina/metabolismo , Western Blotting , Neoplasias da Mama/metabolismo , Subunidade alfa 2 de Fator de Ligação ao Core/metabolismo , Ciclina D1 , Feminino , Pontos de Checagem da Fase G1 do Ciclo Celular , Perfilação da Expressão Gênica , Humanos , Imuno-Histoquímica , Células MCF-7 , Camundongos , Proteínas Proto-Oncogênicas c-myc , Receptores de Estrogênio/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fatores de Transcrição TCF
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...