Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Langmuir ; 38(33): 10075-10080, 2022 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-35914231

RESUMO

The molecular architecture of sugar-based surfactants strongly affects their self-assembled structure, i.e., the type of micelles they form, which in turn controls both the dynamics and rheological properties of the system. Here, we report the segmental and mesoscopic structure and dynamics of a series of C16 maltosides with differences in the anomeric configuration and degree of tail unsaturation. Neutron spin-echo measurements showed that the segmental dynamics can be modeled as a one-dimensional array of segments where the dynamics increase with inefficient monomer packing. The network dynamics as characterized by dynamic light scattering show different relaxation modes that can be associated with the micelle structure. Hindered dynamics are observed for arrested networks of worm-like micelles, connected to their shear-thinning rheology, while nonentangled diffusing rods relate to Newtonian rheological behavior. While the design of novel surfactants with controlled properties poses a challenge for synthetic chemistry, we demonstrate how simple variations in the monomer structure can significantly influence the behavior of surfactants.

2.
J Colloid Interface Sci ; 606(Pt 1): 328-336, 2022 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-34392029

RESUMO

HYPOTHESIS: The self-assembly of long tail sugar-based surfactants into worm-like micelles has recently been demonstrated, and the rheological properties of such systems have been shown to be tuneable through subtle modifications of the molecular characteristics of the surfactant monomer. In particular, the anomeric configuration of the hexadecylmaltoside headgroup was shown to induce profound changes in the nanostructure and rheology of the system. The origin of such changes is hypothesised to arise from differences in the structure and relaxation of the micellar networks in the semi-dilute regime. EXPERIMENTS: Here we explore the molecular background to the flow properties of the two anomers of hexadecylmaltoside (α- and ß-C16G2) by directly connecting their rheological behaviour to the micelle morphology. For this purpose, 1-3 plane rheo-small-angle neutron scattering measurements, using a Couette cell geometry, probed the structural changes in the micellar phase under shear. The effect of surfactant anomeric configuration, surfactant concentration, temperature and mixing ratio of the two anomers were investigated. The static micelle structure in the semi-dilute regime was determined using the polymer reference interaction site model. FINDINGS: The segmental alignment of the micellar phase was studied under several flow conditions, showing that the shear-thinning behaviour relates to the re-arrangement of ß-C16G2 worm-like micelles, whilst shorter α-C16G2 micelles are considerably less affected by the flow. The results are rationalised in terms of micelle alignment and disruption of the entangled network, providing a detailed mechanism by which sugar-based surfactants control the rheology of the fluid. To further enable future studies, we provide the complete code for modelling micelle structure in the semi-dilute regime using the polymer reference interaction site model.


Assuntos
Micelas , Nanoestruturas , Espalhamento a Baixo Ângulo , Açúcares , Tensoativos
3.
J Colloid Interface Sci ; 581(Pt B): 895-904, 2021 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-32950938

RESUMO

HYPOTHESIS: The anomeric configuration (α or ß) of n-hexadecyl-d-maltopyranoside (C16G2) has been shown to affect the morphology of the micelle, from elongated for α-C16G2 to worm-like micelles for ß-C16G2. The entanglement of worm-like micelles often leads to strong modifications of the rheological behavior of the system and, as such, the anomeric configuration of C16G2 could also provide the possibility of controlling this. Furthermore, mixing these surfactants are hypothesized to result in mixed micelles allowing to finely tune the rheology of a system containing these sustainable surfactants. EXPERIMENTS: The rheology of α- and ß-C16G2, and mixtures of those, was determined by rotational and oscillatory rheology at different temperatures and surfactant concentrations. Micelle structure and composition for these systems were characterized using contrast variation small-angle neutron scattering and small-angle X-ray scattering. The results from these were connected in order to elaborate a molecular understanding of the rheological response of the system. FINDINGS: The self-assembly of these surfactants have been found to result in different rheological properties. ß-C16G2 show a high viscosity with a non-Newtonian viscoelastic behavior, which was linked to the formation of worm-like micelles. In contrast, α-C16G2 self-assembled into short cylindrical micelles, resulting in a Newtonian fluid with low viscosity. Furthermore, mixtures of these two surfactants lead to systems with intermediate rheological properties as a result of the formation of micelles with intermediate morphology to those of the pure anomers. These results also show that the rheological properties of the system can be tuned to change the micelle morphology, which in turn depends on the anomeric configuration of the surfactant. Also, surfactant concentration, temperature of the system, and micelle composition for surfactant mixtures provide control over the rheological properties of the system in a wide temperature range. Therefore, these results open new possibilities in the development of sustainable excipients for formulation technology, where the characteristics of the system can be easily tailored through geometric variations in the monomer structure whilst maintaining the chemical composition of the system.

4.
Glycobiology ; 31(5): 603-612, 2021 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-33270133

RESUMO

Alkyl glycoside surfactants with elongated carbohydrate chains are useful in different applications due to their improved biocompatibility. Cyclodextrin glucanotransferases can catalyze the elongation process through the coupling reaction. However, due to the presence of a hydrophobic tail, the interaction between an alkyl glycoside acceptor and the active site residues is weaker than the interaction with maltooligosaccharides at the corresponding site. Here we report the mutations of F197, G263 and E266 near the acceptor subsites in the CGTase CspCGT13 from Carboxydocella sp. The results showed that substitutions of both F197 and G263 were important for the binding of acceptor substrate dodecyl maltoside during coupling reaction. The double mutant F197Y/G263A showed enhanced coupling activity and displayed a 2-fold increase of the primary coupling product using γ-cyclodextrin as donor when compared to wildtype CspCGT13. Disproportionation activity was also reduced, which was also the case for another double mutant (F197Y/E266A) that however not showed the corresponding increase in coupling. A triple mutant F197Y/G263A/E266A maintained the increase in primary coupling product (1.8-fold increase) using dodecyl maltoside as acceptor, but disproportionation was approximately at the same level as in the double mutants. In addition, hydrolysis of starch was slightly increased by the F197Y and G263A substitutions, indicating that interactions at both positions influenced the selectivity between glycosyl and alkyl moieties.


Assuntos
Glucosiltransferases/metabolismo , Glicosídeos/biossíntese , Engenharia de Proteínas , Bactérias Anaeróbias/enzimologia , Biologia Computacional , Glucosiltransferases/genética , Glicosídeos/química , Glicosídeos/genética , Modelos Moleculares , Mutação
5.
J Colloid Interface Sci ; 585: 178-183, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33279700

RESUMO

HYPOTHESIS: The self-assembly of long-tail surfactants results in the formation of nanoscale structures, e.g. worm-like micelles, with the ability to modify the rheology of the system. However, micelle formation, and thus the alteration of the rheology, is subject to the high Krafft temperature of saturated long-tail surfactants. Hexadecylmaltosides are sustainable surfactants that, in solution, form tailorable viscoelastic fluids. The preparation of monounsaturated sugar-based surfactants is hypothesised to reduce the Krafft point compared to the saturated analogues, therefore increasing the temperature range where the surfactant remains in the micellar form. EXPERIMENTS: Here we report the synthesis and characterisation of a novel sugar-based surfactant with an unsaturated C16-tail, namely palmitoleyl-ß-d-maltoside (ß-C16-1G2). Differential scanning calorimetry was used to probe the temperature stability of the system. The rheology of ß-C16-1G2 solutions was investigated by means of rotational and oscillatory rheology, and these results were connected to the mesoscopic structure of the system as shown by small-angle neutron and X-ray scattering, and dynamic light scattering. FINDINGS: The presence of a double bond on the alkyl chain moiety leads to a depression in the Krafft point, allowing the surfactant to form a thermodynamically stable micellar solution over a wide range of temperatures, i.e. 5-95 °C. The surfactant self-assembles into worm-like micelles which, upon entanglement in the semi-dilute regime, result in the formation of a non-Newtonian, viscoelastic fluid. These observations have important implications in the development of new sustainable formulated products, enabling the preparation of surfactant phases with remarkable thermal resilience.

6.
Nanoscale Adv ; 2(9): 4011-4023, 2020 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-36132802

RESUMO

The interactions between protein and surfactants play an important role in the stability and performance of formulated products. Due to the high complexity of such interactions, multi-technique approaches are required to study these systems. Here, an integrative approach is used to investigate the various interactions in a model system composed of human growth hormone and sodium dodecyl sulfate. Contrast variation small-angle neutron scattering was used to obtain information on the structure of the protein, surfactant aggregates and surfactant-protein complexes. 1H and 1H-13C HSQC nuclear magnetic resonance spectroscopy was employed to probe the local structure and dynamics of specific amino acids upon surfactant addition. Through the combination of these advanced methods with fluorescence spectroscopy, circular dichroism and isothermal titration calorimetry, it was possible to identify the interaction mechanisms between the surfactant and the protein in the pre- and post-micellar regimes, and interconnect the results from different techniques. As such, the protein was revealed to evolve from a partially unfolded conformation at low SDS concentration to a molten globule at intermediate concentrations, where the protein conformation and local dynamics of hydrophobic amino acids are partially affected compared to the native state. At higher surfactant concentrations the local structure of the protein appears disrupted, and a decorated micelle structure is observed, where the protein is wrapped around a surfactant assembly. Importantly, this integrative approach allows for the identification of the characteristic fingerprints of complex transitions as seen by each technique, and establishes a methodology for an in-detail study of surfactant-protein systems.

7.
Langmuir ; 35(43): 13904-13914, 2019 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-31566987

RESUMO

The self-assembly of the two anomeric forms of n-hexadecyl-d-maltopyranoside (denoted α-C16G2 and ß-C16G2) has been studied in dilute aqueous solution by means of surface tension measurements, scattering methods (dynamic light scattering, static light scattering, and small-angle X-ray and neutron scattering), and cryo-transmission electron microscopy at different surfactant concentrations and temperatures. Surface tension measurements demonstrate differences in the surfactant adsorption at the air-water interface, where α-C16G2 shows a lower CMC than ß-C16G2. Similarly, micelle morphology was found to profoundly depend on anomerism. ß-C16G2 preferentially forms very elongated micelles with large persistence lengths, whereas α-C16G2 assembles into smaller micelles for which the structure varies with concentration and temperature. The differences between the two surfactant anomers in terms of self-assembly can be attributed to the interaction between neighboring headgroups. Specifically, ß-C16G2 allows for a closer packing in the palisade layer, hence reducing the micelle curvature and promoting the formation of more elongated micelles. Strong intermolecular headgroup interactions may also account for the observed rigidity of the micelles.

8.
PLoS One ; 10(10): e0140709, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26473964

RESUMO

A large part of new pharmaceutical substances are characterized by a poor solubility and high hydrophobicity, which might lead to a difference in drug adsorption between fasted and fed patients. We have previously evaluated the release of hydrophobic drugs from tablets based on Pemulen TR2 and showed that the release can be manipulated by adding surfactants. Here we further evaluate the possibility to use Pemulen TR2 in controlled release tablet formulations containing a poorly soluble substance, griseofulvin. The release is evaluated in simulated intestinal media that model the fasted state (FaSSIF medium) or fed state (FeSSIF). The rheology of polymer gels is studied in separate experiments, in order to gain more information on possible interactions. The release of griseofulvin in tablets without surfactant varied greatly and the slowest release were observed in FeSSIF. Addition of SDS to the tablets eliminated the differences and all tablets showed a slow linear release, which is of obvious relevance for robust drug delivery. Comparing the data from the release studies and the rheology experiment showed that the effects on the release from the different media could to a large extent be rationalised as a consequence of the interactions between the polymer and the surfactants in the media. The study shows that Pemulen TR2 is a candidate for controlled release formulations in which addition of surfactant provides a way to eliminate food effects on the release profile. However, the formulation used needs to be designed to give a faster release rate than the tablets currently investigated.


Assuntos
Resinas Acrílicas/química , Materiais Biomiméticos/química , Líquidos Corporais , Portadores de Fármacos/química , Liberação Controlada de Fármacos , Interações Hidrofóbicas e Hidrofílicas , Intestinos , Preparações de Ação Retardada , Reologia , Solubilidade , Tensoativos/química
9.
J Phys Chem B ; 118(32): 9757-67, 2014 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-25003981

RESUMO

A combination of NMR chemical shift imaging and self-diffusion experiments is shown to give a detailed molecular picture of the events that occur when tablets of hydrophobically modified poly(acrylic acid) loaded with a drug (griseofulvin) swell in water in the presence or absence of surfactant (sodium octylbenzenesulfonate). The hydrophobic substituents on the polymer bind and trap the surfactant molecules in mixed micelles, leading to a slow effective surfactant transport that occurs via a small fraction of individually dissolved surfactant molecules in the water domain. Because of the efficient binding of surfactant, the penetrating water is found to diffuse past the penetrating surfactant into the polymer matrix, pushing the surfactant front outward as the matrix swells. The added surfactant has little effect on the transport of drug because both undissolved solid drug and surfactant-solubilized drug function as reservoirs that essentially follow the polymer as it swells. However, the added surfactant nevertheless has a strong indirect effect on the release of griseofulvin, through the effect of the surfactant on the solubility and erosion of the polymer matrix. The surfactant effectively solubilizes the hydrophobically modified polymer, making it fully miscible with water, leading to a more pronounced swelling and a slower erosion of the polymer matrix.


Assuntos
Resinas Acrílicas/química , Benzenossulfonatos/química , Griseofulvina/química , Tensoativos/química , Comprimidos/química , Interações Hidrofóbicas e Hidrofílicas , Espectroscopia de Ressonância Magnética/normas , Padrões de Referência , Água/química
10.
Langmuir ; 29(45): 13898-908, 2013 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-24106807

RESUMO

A new technique has been developed using NMR chemical shift imaging (CSI) to monitor water penetration and molecular transport in initially dry polymer tablets that also contain small low-molecular weight compounds to be released from the tablets. Concentration profiles of components contained in the swelling tablets could be extracted via the intensities and chemical shift changes of peaks corresponding to protons of the components. The studied tablets contained hydrophobically modified poly(acrylic acid) (HMPAA) as the polymer component and griseofulvin and ethanol as hydrophobic and hydrophilic, respectively, low-molecular weight model compounds. The water solubility of HMPAA could be altered by titration with NaOH. In the pure acid form, HMPAA tablets only underwent a finite swelling until the maximum water content of the polymer-rich phase, as confirmed by independent phase studies, had been reached. By contrast, after partial neutralization with NaOH, the polyacid became fully miscible with water. The solubility of the polymer affected the water penetration, the polymer release, and the releases of both ethanol and griseofulvin. The detailed NMR CSI concentration profiles obtained highlighted the clear differences in the disintegration/dissolution/release behavior for the two types of tablet and provided insights into their molecular origin. The study illustrates the potential of the NMR CSI technique to give information of importance for the development of pharmaceutical tablets and, more broadly, for the general understanding of any operation that involves the immersion and ultimate disintegration of a dry polymer matrix in a solvent.


Assuntos
Resinas Acrílicas/química , Óxido de Deutério/química , Portadores de Fármacos/química , Interações Hidrofóbicas e Hidrofílicas , Preparações Farmacêuticas/química , Griseofulvina/química , Espectroscopia de Ressonância Magnética , Peso Molecular , Solubilidade , Comprimidos
11.
Results Pharma Sci ; 3: 7-14, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-25755999

RESUMO

Many novel pharmaceutically active substances are characterized by a high hydrophobicity and a low water solubility, which present challenges for their delivery as drugs. Tablets made from cross-linked hydrophobically modified poly (acrylic acid) (CLHMPAA), commercially available as Pemulen™, have previously shown promising abilities to control the release of hydrophobic model substances. This study further investigates the possibility to use CLHMPAA in tablet formulations using ibuprofen as a model substance. Furthermore, surfactants were added to the dissolution medium in order to simulate the presence of bile salts in the intestine. The release of ibuprofen is strongly affected by the presence of surfactant and/or buffer in the dissolution medium, which affect both the behaviour of CLHMPAA and the swelling of the gel layer that surrounds the disintegrating tablets. Two mechanisms of tablet disintegration were observed under shear, namely conventional dissolution of a soluble tablet matrix and erosion of swollen insoluble gel particles from the tablet. The effects of surfactant in the surrounding medium can be circumvented by addition of surfactant to the tablet. With added surfactant, tablets that may be insusceptible to the differences in bile salt level between fasted or fed states have been produced, thus addressing a central problem in controlled delivery of hydrophobic drugs. In other words CLHMPAA is a potential candidate to be used in tablet formulations for controlled release with poorly soluble drugs.

12.
Biotechnol Bioeng ; 104(5): 854-61, 2009 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-19609955

RESUMO

Alkyl glycosides with long carbohydrate groups are surfactants with attractive properties but they are very difficult to synthesize. Here, a method for extension of the carbohydrate group of commercially available dodecyl-beta-d-maltoside (DDM) is presented. DDM was converted to dodecyl-beta-d-maltooctaoside (DDMO) in a single step by using a CGTase as catalyst and alpha-cyclodextrin (alpha-CD) as glycosyl donor. The coupling reaction is under kinetic control and the maximum yield depends on the selectivity of the enzyme. The Bacillus macerans CGTase favored the coupling reaction while the Thermoanaerobacter enzyme also catalyzed disproportionation reactions leading to a broader product range. A high ratio alpha-CD/DDM favored a high yield of DDMO and yields up to 80% were obtained using the B. macerans enzyme as catalyst.


Assuntos
Bacillus/enzimologia , Glucosiltransferases/metabolismo , Glicosídeos/metabolismo , Tensoativos/metabolismo , Thermoanaerobacter/enzimologia , Glucosídeos/metabolismo , Modelos Químicos , alfa-Ciclodextrinas/metabolismo
13.
Drug Dev Ind Pharm ; 35(8): 922-9, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19466881

RESUMO

AIM: To investigate the release of hydrophobic and hydrophilic substances from tablets containing Pemulen and Carbopol as excipients. METHOD: The dissolution patterns of a hydrophobic (diazepam) and a hydrophilic active substance (midodrine-HCl) from different tablet formulations containing a nonmodified polyacrylic microgel (Carbopol 981 F) or a hydrophobically modified polyacrylic microgel (Pemulen) have been studied. Possible differences in dissolution in phosphate buffer (pH 6.8) and in 0.1 M HCl between tablets produced using wet granulation and direct compression were also investigated. RESULTS: Tablets produced by wet granulation had a greater effect on the release of active substance from the tablets. No major differences were observed in the release patterns of the hydrophilic substance midodrine-HCl from wet granulated tablets based on Carbopol and Pemulen. However, the release pattern of the more hydrophobic drug substance, diazepam, differed considerably between the two polymers. Wet granulation gave reproducible release patterns. The release patterns from the polymers differed considerably at pH 6.8 but were similar at low pH. CONCLUSIONS: The release of the diazepam from the hydrophobic polymer Pemulen was very slow, and the release was close to zero order.


Assuntos
Resinas Acrílicas/química , Diazepam/administração & dosagem , Portadores de Fármacos/química , Midodrina/administração & dosagem , Administração Oral , Agonistas alfa-Adrenérgicos/administração & dosagem , Agonistas alfa-Adrenérgicos/química , Preparações de Ação Retardada , Diazepam/química , Géis , Concentração de Íons de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas , Hipnóticos e Sedativos/administração & dosagem , Hipnóticos e Sedativos/química , Midodrina/química , Solubilidade , Comprimidos
14.
J Phys Chem B ; 112(12): 3728-34, 2008 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-18307340

RESUMO

The hydration of two different polymorphs of microcrystalline cellulose (cellulose I and II), as well as the hydration of amorphous cellulose was studied using water sorption calorimetry, gravimetric water vapor sorption, nitrogen sorption, and X-ray powder diffraction. Amorphous cellulose was prepared by means of ball-milling of microcrystalline cellulose (MCC). Whereas X-ray data showed the untreated MCC to consist of cellulose I, the amorphous cellulose was found to recrystallize into cellulose II after contact with water or water vapor at relative humidities (RHs) above 90%. Sorption isotherms show an increase of water sorption in the sequence cellulose I

Assuntos
Celulose/química , Água/química , Adsorção , Calorimetria , Cristalização , Cristalografia por Raios X , Nitrogênio/química
15.
Biophys J ; 89(6): 4219-33, 2005 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-16199501

RESUMO

The influence of molecular characteristics on the mutual interaction between peptides and nonionic surfactants has been investigated by studying the effects of surfactants on amphiphilic, random copolymers of alpha-L-amino acids containing lysine residues as the hydrophilic parts. The hydrophobic residues were either phenylalanine or tyrosine. The peptide-surfactant interactions were studied by means of circular dichroism spectroscopy and binding isotherms, as well as by 1D and 2D NMR. The binding of surfactant to the peptides was found to be a cooperative process, appearing at surfactant concentrations just below the critical micellar concentration. However, a certain degree of peptide hydrophobicity is necessary to obtain an interaction with nonionic surfactant. When this prerequisite is fulfilled, the peptide mainly interacts with self-assembled, micelle-like surfactant aggregates formed onto the peptide chain. Therefore, the peptide-surfactant complex is best described in terms of a necklace model, with the peptide interacting primarily with the palisade region of the micelles via its hydrophobic side chains. The interaction yields an increased amount of alpha-helix conformation in the peptide. Surfactants that combine small headgroups with a propensity to form small, nearly spherical micelles were shown to give the largest increase in alpha-helix content.


Assuntos
Peptídeos/análise , Peptídeos/química , Tensoativos/análise , Tensoativos/química , Íons , Ligação Proteica , Eletricidade Estática
16.
Phys Chem Chem Phys ; 7(15): 2970-7, 2005 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-16189619

RESUMO

The thermotropic phase behaviour and phase structure of crystalline and non-crystalline n-tetradecyl-beta-D-maltoside (C14G2) and n-hexadecyl-beta-D-maltoside (C16G2) have been investigated by means of differential scanning calorimetry and X-ray techniques. Upon lyophilisation, both compounds form a solid, lamellar phase comprising disordered head groups and hexagonally packed alkyl chains that are suggested to be tilted and interdigitated. This ordered lamellar phase melts into a metastable lamellar liquid crystal, which re-crystallises to a high-temperature crystalline polymorph comprising interdigitated, non-tilted alkyl chains. Remarkably, the high-temperature polymorph of C14G2 has the same melting point as that of C16G2, namely 105 degrees C for both surfactants. A low-temperature polymorph of anhydrous C14G2 crystallises from water at room temperature, whereas the hemihydrate of C14G2 crystallises at 6 degrees C from water, or from chloroform containing trace water. X-ray data suggest both these crystalline modifications to comprise interdigitated and tilted alkyl chains.


Assuntos
Alcanos/química , Glucosídeos/química , Varredura Diferencial de Calorimetria , Cristalografia por Raios X , Tensoativos/química , Temperatura
17.
Carbohydr Res ; 340(8): 1529-37, 2005 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-15882846

RESUMO

The solid-state phase behaviour of lyophilised n-dodecyl-beta-D-glucoside (beta-C(12)G(1)), n-dodecyl-beta-D-maltoside (beta-C(12)G(2)) and n-dodecyl-beta-D-maltotrioside (beta-C(12)G(3)) has been investigated by differential scanning calorimetry (DSC) and X-ray techniques. For beta-C(12)G(1), lyophilisation results in a formation of a crystalline anhydrate. The lamellar spacing (37 Angstroms) is consistent with an alkyl chain packing in which the chains are not interdigitated. At 80 degrees C, the material melts into a lamellar liquid crystal with a lamellar spacing of 32 Angstroms, which suggests that the non-interdigitated chain packing of the crystalline state is retained in the liquid crystal. In contrast, lyophilisation of beta-C(12)G(2) and beta-C(12)G(3) results in the formation of a glassy state, best described as a frozen version of the lamellar liquid crystal. For beta-C(12)G(2), the lamellar spacing in the glass and liquid crystal suggests interdigitation of the alkyl chains. The glass transition temperature was found to be 65 degrees C for beta-C(12)G(2) and 100 degrees C for beta-C(12)G(3), which compares favourably with the glass transition of the parent carbohydrates. A second crystalline modification of beta-C(12)G(1) was prepared by precipitation from an aqueous solution at temperatures below the Krafft point (38 degrees C). For this modification, the lamellar distance (24 Angstroms) is consistent with interdigitated alkyl chains. At 50 degrees C, the crystalline material melts into a liquid crystalline phase. The material also readily loses water and rapidly re-crystallises to the anhydrate. The amount of water lost upon drying is consistent with the idea that the material is a monohydrate of beta-C(12)G(1). The drying and re-crystallisation processes give rise to 'pre-transitions' in the DSC thermograms and illustrate the importance of careful control of water in any analysis of the phase behaviour of alkylglycosides.


Assuntos
Glucosídeos/química , Transição de Fase , Butanóis , Varredura Diferencial de Calorimetria , Precipitação Química , Liofilização , Difração de Pó , Solventes , Temperatura , Água/química , Difração de Raios X
18.
Biophys Chem ; 116(1): 11-21, 2005 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-15911078

RESUMO

The transition from alpha-helix to random coil of the titrating polyamino acid co-poly-L-(lysine, phenylalanine), (p-(Lys,Phe)), has been investigated as a function of pH and ionic strength in aqueous solution and at the air-water interface by means of circular dichroism (CD) spectroscopy and the Langmuir surface film balance technique. The results strongly suggest that the helix-coil transition for peptides at the air-water interface can be determined by using the two-dimensional Flory exponent, nu, to express the pH dependent peptide surface conformation. The helix-coil titration curve of p-(Lys,Phe) shifts approximately 2.5 pH units towards lower pH at the air-water interface, as compared with the bulk solution. This finding is of relevance for the understanding of conformation and conformational changes of membrane-transporting and membrane penetrating peptides as well as for the use of peptides in molecular devices.


Assuntos
Ar , Peptídeos/química , Água/química , Dicroísmo Circular , Concentração de Íons de Hidrogênio , Peptídeos e Proteínas de Sinalização Intercelular , Microscopia de Força Atômica , Concentração Osmolar , Transição de Fase , Conformação Proteica , Soluções/química , Titulometria
19.
J Pharm Sci ; 94(4): 730-44, 2005 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-15682384

RESUMO

The cell toxic effects of nonionic surfactants were investigated by means of two in vitro models, namely pig nasal mucosa mounted in horizontal Ussing chambers, and Caco-2 cell monolayers. A series of homologous polyethyleneoxide (PEO) surfactants with a wide span in hydrophilic head-group size and hydrophobic chain lengths were screened for concentration-dependent effects on the transepithelial electrical resistance (TEER) and mannitol permeability across Caco-2 cell monolayers. Trends in effects on permeability in the presence of increasing surfactant concentration coincided with the effects seen on TEER. Correlation of surfactant molecular structure with cell toxicity showed the size of the PEO group to be a more critical parameter than the size of the hydrocarbon chain. More specifically, the presence of very long PEO groups (>30 EO units) were found to lead to a decrease in cell toxicity. Similar trends were observed in the studies of the effects of PEO surfactants on pig nasal mucosa mounted in horizontal Ussing chambers. However, the nasal mucosa was somewhat more tolerant towards high surfactant concentrations than the Caco-2 cells. The relation between surfactant molecular structure and cell toxic effects is discussed in terms of micellar surface adsorption and micellar solubilization. The effect of the surfactants on the solubility of budesonide was investigated at two different surfactant concentrations (0.01 and 1 mg/mL). At the lower concentration, the solubilizing capacity of all of the surfactants was marginal, and there was no correlation between solubilizing capacity and cmc. At the higher concentration, on the other hand, all surfactants substantially increased the solubility of budesonide. The C18 PEO-ester with 40 EO units in the head group was found to be an efficient micellar solubilizer for budesonide, without causing adverse effects on the Caco-2 cell monolayers.


Assuntos
Células Epiteliais/efeitos dos fármacos , Mucosa Nasal/citologia , Polietilenoglicóis/química , Polietilenoglicóis/toxicidade , Tensoativos/química , Tensoativos/toxicidade , Antagonistas Adrenérgicos beta/farmacologia , Animais , Anti-Inflamatórios não Esteroides/farmacologia , Budesonida/farmacologia , Células CACO-2 , Fenômenos Químicos , Físico-Química , Cultura em Câmaras de Difusão , Diuréticos/farmacologia , Impedância Elétrica , Humanos , Luz , Manitol/farmacologia , Mucosa Nasal/efeitos dos fármacos , Propranolol/farmacologia , Espalhamento de Radiação , Relação Estrutura-Atividade , Tensão Superficial , Suínos
20.
Langmuir ; 21(4): 1507-15, 2005 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-15697301

RESUMO

The effects of salt, temperature, and deuterium oxide on the self-aggregation of n-tetradecyl-beta-d-maltoside (C(14)G(2)) in dilute solution have been investigated by static light scattering, dynamic light scattering (DLS), small-angle neutron scattering (SANS), tensiometry, and capillary viscometry. SANS data show that the micelles can be described as relatively flexible polymer-like micelles with an elliptical cross section, at least at temperatures between 35 and 50 degrees C. The micelles grow in one dimension with increasing temperature and concentration. DLS and viscometry data suggest that the micelle size reaches a maximum at 60-70 degrees C. Comparison of DLS data in D(2)O and H(2)O shows that the micelles are larger in the former case. The effect of salt on the micelle size was found to follow the Hofmeister series. Thus, at constant salt concentration, the micelle size decreases according to the sequence SO(4)(2)(-) > Cl(-) > NO(3)(-) > I(-) > SCN(-), where I(-) and SCN(-) act as salting-in anions. From tensiometric data, it can be concluded that the temperature effects on micelle morphology do not correlate directly with those on unimer solubility. Rather, the temperature effect on the hydrocarbon chain conformation seems to be decisive for the micelle morphology. At constant temperature, on the other hand, the effect of salt and deuterium isotope is attributable to changes in effective headgroup area, including intermolecular interactions and water of hydration.


Assuntos
Óxido de Deutério/química , Maltose/química , Cloreto de Sódio/química , Alquilação , Micelas , Soluções , Tensão Superficial , Temperatura , Viscosidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...