Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biochemistry ; 42(43): 12550-61, 2003 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-14580201

RESUMO

The 90 kDa heat shock protein (Hsp90) cooperates with its co-chaperone Cdc37 to provide obligatory support to numerous protein kinases involved in the regulation of cellular signal transduction pathways. In this report, crystal structures of protein kinases were used to guide the dissection of two kinases [the Src-family tyrosine kinase, Lck, and the heme-regulated eIF2alpha kinase (HRI)], and the association of Hsp90 and Cdc37 with these constructs was assessed. Hsp90 interacted with both the N-terminal (NL) and C-terminal (CL) lobes of the kinases' catalytic domains. In contrast, Cdc37 interacted only with the NL. The Hsp90 antagonist molybdate was necessary to stabilize the interactions between isolated subdomains and Hsp90 or Cdc37, but the presence of both lobes of the kinases' catalytic domain generated a stable salt-resistant chaperone-client heterocomplex. The Hsp90 co-chaperones FKBP52 and p23 interacted with the catalytic domain and the NL of Lck, whereas protein phosphatase 5 demonstrated unique modes of kinase binding. Cyp40 was a salt labile component of Hsp90 complexes formed with the full-length, catalytic domains, and N-terminal catalytic lobes of Lck and HRI. Additionally, dissections identify a specific kinase motif that triggers Hsp90's conformational switching to a high-affinity client binding state. Results indicate that the Hsp90 machine acts as a versatile chaperone that recognizes multiple regions of non-native proteins, while Cdc37 binds to a more specific kinase segment, and that concomitant recognition of multiple client segments is communicated to generate or stabilize high-affinity chaperone-client heterocomplexes.


Assuntos
Proteínas de Choque Térmico HSP90/metabolismo , Fosfotransferases/metabolismo , Domínio Catalítico , Proteínas de Choque Térmico HSP90/química , Modelos Moleculares , Ligação Proteica , Conformação Proteica
2.
Biochemistry ; 41(11): 3742-53, 2002 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-11888292

RESUMO

The ability of two high-affinity Hsc70-binding peptides [FYQLALT (peptide-Phi) and NIVRKKK (peptide-K)] to differentially inhibit Hsc70-dependent processes in rabbit reticulocyte lysate (RRL) was examined. Both peptide-Phi and peptide-K inhibited chaperone-dependent renaturation of luciferase in RRL. Peptide-Phi, but not peptide-K, blocked Hsp90/Hsc70-dependent transformation of the heme-regulated eIF2 alpha kinase (HRI) into an active, heme-regulatable kinase. In contrast, peptide-K, but not peptide-Phi, inhibited Hsc70-mediated suppression of the activation of mature-transformed HRI. Furthermore, HDJ2 (Human DnaJ homologue 2), but not HDJ1, potentiated the ability of Hsc70 to suppress the activation of HRI in RRL. Mechanistically, peptide-K inhibited, while peptide-Phi enhanced, HDJ2-induced stimulation of Hsc70 ATPase activity in vitro. The data presented support the hypotheses that peptide-Phi acts to inhibit Hsc70 function by binding to the hydrophobic peptide-binding cleft of Hsc70, while peptide-K acts through binding to a site that modulates the interaction of Hsc70 with DnaJ homologues. Overall, the data indicate that peptide-Phi and peptide-K have differential effects on Hsc70 functions under quasi-physiological conditions in RRL, and suggest that therapeutically valuable peptide mimetics can be designed to inhibit specific functions of Hsc70.


Assuntos
Proteínas de Choque Térmico HSP70/antagonistas & inibidores , Peptídeos/metabolismo , Sequência de Aminoácidos , Proteínas de Choque Térmico HSC70 , Proteínas de Choque Térmico HSP70/metabolismo , Luciferases/metabolismo , Dobramento de Proteína
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...