Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chemosphere ; 322: 138178, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36828113

RESUMO

The water contamination caused by discharging extensive organic dyes stuff into water bodies is one of the utmost significant concerns disturbing the environment and human life. CdAl2O4 spinel materials have been excellent in the elimination of emerging pollutants by the photocatalysis route. These materials, when altered through methods namely doping with Mg ions, have benefits over CdAl2O4, especially reduced energy gap and light absorbed in the visible region. The XRD established the creation of space group R 3‾ with no other phase step being found. The photoluminescence outcomes indicated that Mg-doped CdAl2O4 nanoparticles had the preventing e--h+ recombination possibility, which was favorable for the photocatalytic process. The Mg (0.075 M)-doped CdAl2O4 catalyst had higher photocatalytic performance with 94 and 96% removal of two azo (BB and BG) dyes under a mere 90 min visible light irradiation, which indicated enhanced Photodegradation behaviors when compared to other Mg (0.025, 0.050 M)-doped and pure CdAl2O4 materials. More interestingly, pH 5 was optimum for the Mg (0.075 M)-doped CdAl2O4 samples photodegradation of both dyes, and the optimum catalyst amount was 5 mg/100 mL. The doped Mg ions influenced the elimination of both dyes by inducing the manufacture of more active species. The Mg (0.075 M)-doped CdAl2O4 samples is reusable and highly stable with only a 5% reduction in degradation rate after six cycles. Based on the quencher and ESR investigations, the .OH- and h+ are described as active species in the removal reaction. We hope our present examinations highlight the possibility of using Mg (0.075 M)-doped CdAl2O4 product for a broad range of photodegradation applications, also it may be applied for several ecological remediations, surface cleaning devices, foods and pharmaceutical industry applications.


Assuntos
Poluentes Ambientais , Nanopartículas , Humanos , Fotólise , Iluminação , Luz , Catálise , Água , Corantes
2.
Chemosphere ; 321: 138069, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36764620

RESUMO

Worldwide environmental issues have been escalating with the growth of the global economy and become a vital problem. To solve the problems, we require an eco-friendly and sustainable binary catalyst for the degradation of Azo dye pollutants. In this work, magnetically reusable, multifunctional novel Mn-doped CdAl2O4 nanoparticles were effectively fabricated by the co-precipitation approach. It was utilized for the degradation of two Azo dyes, exhibiting 96 and 98% Mn (0.050 M)-doped CdAl2O4 removal rates under visible light illumination, and presenting improved photocatalytic capability than that of pure and other dopants. More notably, the Mn (0.050 M)-doped CdAl2O4 catalyst was recycled using centrifuges without major loss and displays almost similar photodegradation behaviors for six successive runs. According to the ESR measurements, outcome and quenching tests affirmed that .OH- and h+ radicals were better reactive species responsible for Azo dyes removal. A possible photodegradation reaction mechanism underlying the elimination of Azo dyes by Mn (0.050 M)-doped CdAl2O4 catalyst is also proposed. Elaborated analyzes by variable reaction parameters such as the role of reactive species and catalyst dosage, pH, COD and irradiation time in the degradation route was also discussed. We assume that our outcomes will provide novel insights into using a highly effectual Mn (0.050 M)-doped CdAl2O4 catalyst, with possible applications in the treatment of both industrial and domestic wastewater.


Assuntos
Iluminação , Nanopartículas , Fotólise , Corantes , Luz , Compostos Azo , Catálise
3.
Chemosphere ; 323: 138232, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36841458

RESUMO

Modern-year organic contaminants have been highly observed in ecosystems since they are not removed entirely and remain dangerous. Semiconductor binary oxide photocatalysts have been well accredited as capable technology for ecological contaminants degradation in the existence of visible irradiation. In this research, novel Co ions doped CdAl2O4 materials were fabricated by a facile co-precipitation approach. The fabricated pure and Co-doped CdAl2O4 exhibited the typical peaks of CdAl2O4 with the Eg of 3.66, 3.24, 2.57, and 2.41 eV respectively. The HR-TEM microstructures revealed that the Co (0.075 M) doped CdAl2O4 has rod-like morphology, and some places are spherical with particle sizes reaching 21 nm. The PL peaks of the Co (0.075 M)-CdAl2O4 are much lesser than that of the other dopant and pure CdAl2O4, representing much more effectual separation of generated e- and h+ at the interface which in fact outcomes in superior expected photodegradation behaviours. The Co (0.075 M)-CdAl2O4 catalyst demonstrated the highest performances of 92 and 94% toward the degradation of both dyes, respectively, owing to the lowest e- and h+ recombination rate. The Co (0.075 M) doped CdAl2O4 photocatalyst revealed outstanding reusability and stability under visible irradiation, retaining the performance of about 83 and 86% after the fifth consecutive run of BB and BG elimination. A probable photodegradation mechanism of Co (0.075 M) doped CdAl2O4 was suggested since the photoexcited h+, OH- and O2- species contributed to the removal process, and that was affirmed by the scavenging test and ESR analysis. This research offers new ways to improve the photodegradation performance of the Co-doped CdAl2O4 catalyst that will be employed in pharmaceutical applications and wastewater treatment.


Assuntos
Poluentes Ambientais , Poluentes Ambientais/química , Cádmio , Fotólise , Compostos Azo/química , Cobalto/química , Ecossistema , Catálise
4.
Chemosphere ; 308(Pt 2): 136416, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36099991

RESUMO

Industrialization and globalization, both on an international and local scale, have caused large quantities of toxic chemicals to be released into the environment. Thus, developing an environmental pollutant sensor platform that is sensitive, reliable, and cost-effective is extremely important. In current years, considerable progress has been made in the expansion of electrochemical sensors and biosensors to monitor the environment using nanomaterials. A large number of emerging biomarkers are currently in existence in the biological fluids, clinical, pharmaceutical and bionanomaterial-based electrochemical biosensor platforms have drawn much attention. Electrochemical systems have been used to detect biomarkers rapidly, sensitively, and selectively using biomaterials such as biopolymers, nucleic acids, proteins etc. In this current review, several recent trends have been identified in the growth of electrochemical sensor platforms using nanotechnology such as carbon nanomaterials, metal oxide nanomaterials, metal nanoparticles, biomaterials and polymers. The integration strategies, applications, specific properties and future projections of nanostructured materials for emerging progressive sensor platforms are also observed. The objective of this review is to provide a comprehensive overview of nanoparticles in the field of electrochemical sensors and biosensors.


Assuntos
Técnicas Biossensoriais , Técnicas Eletroquímicas , Nanoestruturas , Materiais Biocompatíveis , Biomarcadores , Carbono , Poluentes Ambientais , Ácidos Nucleicos , Óxidos , Preparações Farmacêuticas , Polímeros
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...