Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Respir Res ; 25(1): 120, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38468259

RESUMO

BACKGROUND: Airway basal cells (BC) from patients with chronic obstructive pulmonary disease (COPD) regenerate abnormal airway epithelium and this was associated with reduced expression of several genes involved in epithelial repair. Quercetin reduces airway epithelial remodeling and inflammation in COPD models, therefore we examined whether quercetin promotes normal epithelial regeneration from COPD BC by altering gene expression. METHODS: COPD BC treated with DMSO or 1 µM quercetin for three days were cultured at air/liquid interface (ALI) for up to 4 weeks. BC from healthy donors cultured at ALI were used as controls. Polarization of cells was determined at 8 days of ALI. The cell types and IL-8 expression in differentiated cell cultures were quantified by flow cytometry and ELISA respectively. Microarray analysis was conducted on DMSO or 1 µM quercetin-treated COPD BC for 3 days to identify differentially regulated genes (DEG). Bronchial brushings obtained from COPD patients with similar age and disease status treated with either placebo (4 subjects) or 2000 mg/day quercetin (7 subjects) for 6 months were used to confirm the effects of quercetin on gene expression. RESULTS: Compared to placebo-, quercetin-treated COPD BC showed significantly increased transepithelial resistance, more ciliated cells, fewer goblet cells, and lower IL-8. Quercetin upregulated genes associated with tissue and epithelial development and differentiation in COPD BC. COPD patients treated with quercetin, but not placebo showed increased expression of two developmental genes HOXB2 and ELF3, which were also increased in quercetin-treated COPD BC with FDR < 0.001. Active smokers showed increased mRNA expression of TGF-ß (0.067) and IL-8 (22.0), which was reduced by 3.6 and 4.14 fold respectively after quercetin treatment. CONCLUSIONS: These results indicate that quercetin may improve airway epithelial regeneration by increasing the expression of genes involved in epithelial development/differentiation in COPD. TRIAL REGISTRATION: This study was registered at ClinicalTrials.gov on 6-18-2019. The study number is NCT03989271.


Assuntos
Doença Pulmonar Obstrutiva Crônica , Quercetina , Humanos , Quercetina/farmacologia , Quercetina/uso terapêutico , Quercetina/metabolismo , Interleucina-8/metabolismo , Dimetil Sulfóxido/metabolismo , Dimetil Sulfóxido/farmacologia , Doença Pulmonar Obstrutiva Crônica/diagnóstico , Doença Pulmonar Obstrutiva Crônica/tratamento farmacológico , Doença Pulmonar Obstrutiva Crônica/genética , Brônquios/metabolismo , Células Epiteliais/metabolismo , Células Cultivadas , Fatores de Transcrição/metabolismo , Proteínas de Homeodomínio/metabolismo , Proteínas de Homeodomínio/farmacologia
2.
ERJ Open Res ; 9(3)2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37228294

RESUMO

Background: Airway epithelial cells from patients with COPD show suboptimal innate immune responses to nontypeable Haemophilus influenzae (NTHi) and Toll-like receptor (TLR)2 ligands despite expressing TLR2 similar to normal airway epithelial cells, but the underlying mechanisms are poorly understood. Methods: Normal or COPD mucociliary-differentiated airway epithelial cells were treated with TLR2 agonists or infected with NTHi and expression of ß-defensin (HBD)2 was examined. Interleukin-1 receptor-associated kinase (IRAK)-1 and microRNA (miR)146a were genetically inhibited in normal and COPD airway epithelial cell cultures, respectively, and HBD2 responses to TLR2 ligands were determined. IRAK-1 expression in lung sections was determined by immunofluorescence microscopy. Results: Compared to normal, COPD airway epithelial cell cultures showed impaired expression of HBD2 in response to TLR2 agonists or NTHi infection. Apical secretions from TLR2 agonist-treated normal, but not COPD, airway epithelial cells efficiently killed NTHi. Knockdown of HBD2 significantly reduced NTHi killing by apical secretions of normal airway epithelial cells. Compared to normal, COPD cells showed significantly reduced expression of IRAK-1 and this was associated with increased expression of miR146a. Inhibition of miR146a increased the expression of IRAK-1, improved the expression of HBD2 in response to TLR2 agonists in COPD cells and enhanced the killing of bacteria by apical secretions obtained from TLR2 agonist-treated COPD cells. Bronchial epithelium of COPD patients showed reduced expression of IRAK-1. Conclusions: These results suggest that reduced levels of IRAK-1 due to increased expression of miR146a may contribute to impaired expression of TLR2-induced HBD2 in COPD airway epithelial cells.

3.
Clin Sci (Lond) ; 135(17): 2067-2083, 2021 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-34405230

RESUMO

Dipeptidyl peptidase 4 (DPP4) expression is increased in the lungs of chronic obstructive pulmonary disease (COPD). DPP4 is known to be associated with inflammation in various organs, including LPS-induced acute lung inflammation. Since non-typeable Haemophilus influenzae (NTHi) causes acute exacerbations in COPD patients, we examined the contribution of DPP4 in NTHi-induced lung inflammation in COPD. Pulmonary macrophages isolated from COPD patients showed higher expression of DPP4 than the macrophages isolated from normal subjects. In response to NTHi infection, COPD, but not normal macrophages show a further increase in the expression of DPP4. COPD macrophages also showed higher expression of IL-1ß, and CCL3 responses to NTHi than normal, and treatment with DPP4 inhibitor, diprotin A attenuated this response. To examine the contribution of DPP4 in NTHi-induced lung inflammation, COPD mice were infected with NTHi, treated with diprotin A or PBS intraperitoneally, and examined for DPP4 expression, lung inflammation, and cytokine expression. Mice with COPD phenotype showed increased expression of DPP4, which increased further following NTHi infection. DPP4 expression was primarily observed in the infiltrated inflammatory cells. NTHi-infected COPD mice also showed sustained neutrophilic lung inflammation and expression of CCL3, and this was inhibited by DPP4 inhibitor. These observations indicate that enhanced expression of DPP4 in pulmonary macrophages may contribute to sustained lung inflammation in COPD following NTHi infection. Therefore, inhibition of DPP4 may reduce the severity of NTHi-induced lung inflammation in COPD.


Assuntos
Dipeptidil Peptidase 4/metabolismo , Infecções por Haemophilus/enzimologia , Haemophilus influenzae/patogenicidade , Macrófagos Alveolares/enzimologia , Pneumonia Bacteriana/enzimologia , Doença Pulmonar Obstrutiva Crônica/enzimologia , Idoso , Animais , Estudos de Casos e Controles , Quimiocina CCL20/metabolismo , Quimiocina CCL3/metabolismo , Modelos Animais de Doenças , Feminino , Infecções por Haemophilus/microbiologia , Interações Hospedeiro-Patógeno , Humanos , Interleucina-1beta/metabolismo , Macrófagos Alveolares/microbiologia , Masculino , Camundongos , Pessoa de Meia-Idade , Pneumonia Bacteriana/microbiologia , Doença Pulmonar Obstrutiva Crônica/microbiologia
4.
BMJ Open Respir Res ; 7(1)2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-32071149

RESUMO

INTRODUCTION: Quercetin is a plant flavonoid and has potent antioxidant and anti-inflammatory properties. In a preclinical model of chronic obstructive pulmonary disease (COPD), quercetin reduced markers of both oxidative stress and lung inflammation and also reduced rhinovirus-induced progression of lung disease. Although quercetin appears to be an attractive natural alternative to manage COPD, the safety of quercetin supplementation in this population is unknown. METHODS: We recruited COPD patients with mild-to-severe lung disease with FVE1 ranging between >35% and <80% and supplemented with either placebo or quercetin at 500, 1000 or 2000 mg/day in a dose-escalation manner. The duration of quercetin supplementation was 1 week. RESULTS: Patients had no study drug-related severe adverse events based on blood tests, which included both complete blood counts and evaluation of comprehensive metabolic panel. One of the patients reported mild adverse events included gastro-oesophageal reflux disease, which was observed in both placebo and quercetin groups. CONCLUSIONS: Quercetin was safely tolerated up to 2000 mg/day as assessed by lung function, blood profile and COPD assessment test questionnaire. TRIAL REGISTRATION NUMBER: NCT01708278.


Assuntos
Anti-Inflamatórios/administração & dosagem , Antioxidantes/administração & dosagem , Doença Pulmonar Obstrutiva Crônica/tratamento farmacológico , Quercetina/administração & dosagem , Idoso , Anti-Inflamatórios/efeitos adversos , Antioxidantes/efeitos adversos , Glicemia , Suplementos Nutricionais , Método Duplo-Cego , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Estresse Oxidativo/efeitos dos fármacos , Quercetina/efeitos adversos , Testes de Função Respiratória , Índice de Gravidade de Doença
5.
J Immunol ; 203(9): 2508-2519, 2019 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-31548332

RESUMO

IFN responses to viral infection are necessary to establish intrinsic antiviral state, but if unchecked can lead to heightened inflammation. Recently, we showed that TLR2 activation contributes to limitation of rhinovirus (RV)-induced IFN response in the airway epithelial cells. We also demonstrated that compared with normal airway epithelial cells, those from patients with chronic obstructive pulmonary disease (COPD) show higher IFN responses to RV, but the underlying mechanisms are not known. Initially, RV-induced IFN responses depend on dsRNA receptor activation and then are amplified via IFN-stimulated activation of JAK/STAT signaling. In this study, we show that in normal cells, TLR2 limits RV-induced IFN responses by attenuating STAT1 and STAT2 phosphorylation and this was associated with TLR2-dependent SIRT-1 expression. Further, inhibition of SIRT-1 enhanced RV-induced IFN responses, and this was accompanied by increased STAT1/STAT2 phosphorylation, indicating that TLR2 may limit RV-induced IFN responses via SIRT-1. COPD airway epithelial cells showed attenuated IL-8 responses to TLR2 agonist despite expressing TLR2 similar to normal, indicating dysregulation in TLR2 signaling pathway. Unlike normal, COPD cells failed to show RV-induced TLR2-dependent SIRT-1 expression. Pretreatment with quercetin, which increases SIRT-1 expression, normalized RV-induced IFN levels in COPD airway epithelial cells. Inhibition of SIRT-1 in quercetin-pretreated COPD cells abolished the normalizing effects of quercetin on RV-induced IFN expression in these cells, confirming that quercetin exerts its effect via SIRT-1. In summary, we show that TLR2 is required for limiting RV-induced IFNs, and this pathway is dysregulated in COPD airway epithelial cells, leading to exaggerated IFN production.


Assuntos
Brônquios/imunologia , Interferons/biossíntese , Doença Pulmonar Obstrutiva Crônica/etiologia , Rhinovirus/patogenicidade , Sirtuína 1/fisiologia , Receptor 2 Toll-Like/fisiologia , Células Cultivadas , Células Epiteliais , Humanos , Helicase IFIH1 Induzida por Interferon/fisiologia , Doença Pulmonar Obstrutiva Crônica/imunologia , RNA de Cadeia Dupla/fisiologia , Fatores de Transcrição STAT/fisiologia , Transdução de Sinais/fisiologia , Sirtuína 1/genética , Proteína 1 Supressora da Sinalização de Citocina/fisiologia
6.
Clin Sci (Lond) ; 133(8): 983-996, 2019 04 30.
Artigo em Inglês | MEDLINE | ID: mdl-30952808

RESUMO

Rhinovirus (RV), which is associated with acute exacerbations, also causes persistent lung inflammation in patients with chronic obstructive pulmonary disease (COPD), but the underlying mechanisms are not well-known. Recently, we demonstrated that RV causes persistent lung inflammation with accumulation of a subset of macrophages (CD11b+/CD11c+), and CD8+ T cells, and progression of emphysema. In the present study, we examined the mechanisms underlying the RV-induced persistent inflammation and progression of emphysema in mice with COPD phenotype. Our results demonstrate that at 14 days post-RV infection, in addition to sustained increase in CCL3, CXCL-10 and IFN-γ expression as previously observed, levels of interleukin-33 (IL-33), a ligand for ST2 receptor, and matrix metalloproteinase (MMP)12 are also elevated in mice with COPD phenotype, but not in normal mice. Further, MMP12 was primarily expressed in CD11b+/CD11c+ macrophages. Neutralization of ST2, reduced the expression of CXCL-10 and IFN-γ and attenuated accumulation of CD11b+/CD11c+ macrophages, neutrophils and CD8+ T cells in COPD mice. Neutralization of IFN-γ, or ST2 attenuated MMP12 expression and prevented progression of emphysema in these mice. Taken together, our results indicate that RV may stimulate expression of CXCL-10 and IFN-γ via activation of ST2/IL-33 signaling axis, which in turn promote accumulation of CD11b+/CD11c+ macrophages and CD8+ T cells. Furthermore, RV-induced IFN-γ stimulates MMP12 expression particularly in CD11b+/CD11c+ macrophages, which may degrade alveolar walls thus leading to progression of emphysema in these mice. In conclusion, our data suggest an important role for ST2/IL-33 signaling axis in RV-induced pathological changes in COPD mice.


Assuntos
Proteína 1 Semelhante a Receptor de Interleucina-1/imunologia , Interleucina-33/imunologia , Infecções por Picornaviridae/imunologia , Doença Pulmonar Obstrutiva Crônica/imunologia , Rhinovirus/fisiologia , Animais , Quimiocina CCL3/genética , Quimiocina CCL3/imunologia , Quimiocina CXCL10/genética , Quimiocina CXCL10/imunologia , Modelos Animais de Doenças , Progressão da Doença , Feminino , Humanos , Interferon gama/genética , Interferon gama/imunologia , Proteína 1 Semelhante a Receptor de Interleucina-1/genética , Interleucina-33/genética , Pulmão/imunologia , Pulmão/patologia , Pulmão/virologia , Macrófagos/imunologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neutrófilos/imunologia , Infecções por Picornaviridae/genética , Infecções por Picornaviridae/patologia , Infecções por Picornaviridae/virologia , Doença Pulmonar Obstrutiva Crônica/genética , Doença Pulmonar Obstrutiva Crônica/patologia , Doença Pulmonar Obstrutiva Crônica/virologia
8.
PLoS One ; 13(7): e0199612, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29975735

RESUMO

Acute exacerbations are the major cause of morbidity and mortality in patients with chronic obstructive pulmonary disease (COPD). Rhinovirus, which causes acute exacerbations may also accelerate progression of lung disease in these patients. Current therapies reduces the respiratory symptoms and does not treat the root cause of exacerbations effectively. We hypothesized that quercetin, a potent antioxidant and anti-inflammatory agent with antiviral properties may be useful in treating rhinovirus-induced changes in COPD. Mice with COPD phenotype maintained on control or quercetin diet and normal mice were infected with sham or rhinovirus, and after 14 days mice were examined for changes in lung mechanics and lung inflammation. Rhinovirus-infected normal mice showed no changes in lung mechanics or histology. In contrast, rhinovirus-infected mice with COPD phenotype showed reduction in elastic recoiling and increase in lung inflammation, goblet cell metaplasia, and airways cholinergic responsiveness compared to sham-infected mice. Interestingly, rhinovirus-infected mice with COPD phenotype also showed accumulation of neutrophils, CD11b+/CD11c+ macrophages and CD8+ T cells in the lungs. Quercetin supplementation attenuated rhinovirus-induced all the pathologic changes in mice with COPD phenotype. Together these results indicate that quercetin effectively mitigates rhinovirus-induced progression of lung disease in a mouse model of COPD. Therefore, quercetin may be beneficial in the treatment of rhinovirus-associated exacerbations and preventing progression of lung disease in COPD.


Assuntos
Infecções por Picornaviridae/complicações , Infecções por Picornaviridae/virologia , Doença Pulmonar Obstrutiva Crônica/etiologia , Doença Pulmonar Obstrutiva Crônica/patologia , Quercetina/farmacologia , Rhinovirus , Animais , Anti-Inflamatórios/farmacologia , Antivirais/farmacologia , Biópsia , Citocinas/genética , Citocinas/metabolismo , Modelos Animais de Doenças , Progressão da Doença , Mediadores da Inflamação/metabolismo , Macrófagos/imunologia , Macrófagos/metabolismo , Macrófagos/patologia , Camundongos , Infiltração de Neutrófilos , Neutrófilos/metabolismo , Neutrófilos/patologia , Fenótipo , Infecções por Picornaviridae/tratamento farmacológico , Doença Pulmonar Obstrutiva Crônica/tratamento farmacológico , Doença Pulmonar Obstrutiva Crônica/fisiopatologia , Rhinovirus/efeitos dos fármacos , Linfócitos T/imunologia , Linfócitos T/metabolismo , Linfócitos T/patologia
9.
Sci Rep ; 8(1): 8891, 2018 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-29891908

RESUMO

A simple and effective approach for vertical alignment of liquid crystals (LCs) over a functionalized transparent flexible substrate is described. Surface characterization of this commercially available plastic substrate through X-ray photoelectron spectroscopy (XPS) and attenuated total reflection infrared spectroscopy (ATR-IR) indicated that cellulose acetate is main component of the transparent substrate. This substrate was chemically functionalized with a suitable LC compound. A trimethoxysilane terminated new rod-shaped mesogen is synthesized and covalently attached to the pre-treated film through silane condensation reaction. LC functionalization of the polymer film is confirmed through contact angle (CA), atomic force microscopy (AFM), XPS and ATR-IR spectroscopy studies. Versatility of the LC modified flexible substrates for the alignment of bulk LC sample at substrate-LC interface was assessed for nematic (N) and smectic A (SmA) phases. Remarkably, LC functionalized cellulose acetate films were found to be highly efficient in assisting a perfect homeotropic alignment of LCs (for both, a room temperature N and a high temperature SmA phase) over the entire area of the LC sample under observation indicating their superior aligning ability in comparison to their unmodified and octadecyltrimethoxysilane (OTS) modified counterparts. The demonstrated method of surface modification of flexible polymer film is easy, surface modified substrates are stable for several months, retained their aligning ability intact and more importantly they are reusable with maximum delivery.

10.
World J Surg ; 42(5): 1408-1414, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29532140

RESUMO

INTRODUCTION: Cardiovascular dysfunction (CVD) is a well-recognized complication in patients with hyperthyroidism and is the major cause of mortality. Very few studies have compared the outcome of CVD following different treatment modalities. In this study we intended to compare treatment modalities (antithyroid drugs vs surgery) for reversal of CVD. MATERIALS AND METHODS: Patients with newly detected hyperthyroidism were grouped into, Group I [n = 123, age <60 years, undergoing total thyroidectomy], Group II [n = 42, age <60 years, treated with antithyroid medications] were evaluated with 2D echocardiography, serum N terminal pro brain natriuretic peptide (NT-pro-BNP) at the time of diagnosis (Point A), after achieving euthyroidism (Point B) with antithyroid drugs and 6 months after surgery/continuation of antithyroid medications (Point C). Forty patients (Group III), age < 60 years, undergoing total thyroidectomy for nontoxic benign thyroid nodules served as controls. RESULTS: All groups were age and sex matched. At Point A, CVD was evident in 80/123 (65%) in Group I and 28/42 (66.7%) in Group II. At Point B improvement in CVD occurred in 84/123 (68.3%) in Group and 29/42 (69.04%) in Group II. At Point C dramatic improvement in CVD occurred in 118/123 (95.9%) in Group I, whereas only 33/42 (78.5%) improved in Group II. CVD were comparable between Groups I and II at Point A and Point B (p > 0.05). At Point C there was a significant decrease in all the diastolic dysfunction parameters in Group I, whereas the same was not observed in Group II patients. Systolic dysfunction between Groups II and II had no statistical significance at Point C. CONCLUSION: Total thyroidectomy seems to be the definitive treatment of choice for hyperthyroid cardiac dysfunction with diastolic dysfunction completely reversing at 6 months after TT.


Assuntos
Antitireóideos/uso terapêutico , Doenças Cardiovasculares/terapia , Hipertireoidismo/complicações , Hipertireoidismo/terapia , Tireoidectomia , Doenças Cardiovasculares/etiologia , Diástole , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos
11.
Chemphyschem ; 18(10): 1358-1369, 2017 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-28266094

RESUMO

Two different types of gold nanostars (Au NS), namely, short-spiked nanostars (SSNS) and long-spiked nanostars (LSNS), are prepared by using a hexagonal lyotropic liquid-crystalline (LLC) phase as a template. The formation, size and length of spikes or arms of the resultant Au NS are controlled by preparation in either a hexagonal LLC phase or an isotropic phase. These NS are anchored onto indium tin oxide (ITO) electrodes through a self-assembled monolayer of 3-mercaptopropyltrimethoxysilane, which acts as a linker molecule. Structural and morphological characterisations of SSNS- and LSNS-anchored ITO electrodes are performed by means of microscopic and spectroscopic analyses. Further electrochemical techniques, namely, cyclic voltammetry and electrochemical impedance spectroscopy, are also used to confirm the immobilisation of these Au NS on ITO electrodes and to study the electrochemical characteristics. These studies clearly reveal the formation of star-shaped, branched, anisotropic nanostructures of gold during the template preparation method and these Au NS are successfully anchored onto ITO electrodes through a covalent immobilisation strategy. Furthermore, the SERS activity of these Au NS is analysed by using glutathione and crystal violet as analytes and by employing glass and ITO as substrates. It is interesting to note that SSNS show a significant enhancement in SERS signals relative to those of LSNS.

12.
Am J Respir Cell Mol Biol ; 55(4): 487-499, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27119973

RESUMO

Rhinovirus (RV), which causes exacerbation in patients with chronic airway diseases, readily infects injured airway epithelium and has been reported to delay wound closure. In this study, we examined the effects of RV on cell repolarization and differentiation in a model of injured/regenerating airway epithelium (polarized, undifferentiated cells). RV causes only a transient barrier disruption in a model of normal (mucociliary-differentiated) airway epithelium. However, in the injury/regeneration model, RV prolongs barrier dysfunction and alters the differentiation of cells. The prolonged barrier dysfunction caused by RV was not a result of excessive cell death but was instead associated with epithelial-to-mesenchymal transition (EMT)-like features, such as reduced expression of the apicolateral junction and polarity complex proteins, E-cadherin, occludin, ZO-1, claudins 1 and 4, and Crumbs3 and increased expression of vimentin, a mesenchymal cell marker. The expression of Snail, a transcriptional repressor of tight and adherence junctions, was also up-regulated in RV-infected injured/regenerating airway epithelium, and inhibition of Snail reversed RV-induced EMT-like features. In addition, compared with sham-infected cells, the RV-infected injured/regenerating airway epithelium showed more goblet cells and fewer ciliated cells. Inhibition of epithelial growth factor receptor promoted repolarization of cells by inhibiting Snail and enhancing expression of E-cadherin, occludin, and Crumbs3 proteins, reduced the number of goblet cells, and increased the number of ciliated cells. Together, these results suggest that RV not only disrupts barrier function, but also interferes with normal renewal of injured/regenerating airway epithelium by inducing EMT-like features and subsequent goblet cell hyperplasia.

13.
Mol Pharm ; 12(7): 2396-405, 2015 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-25978582

RESUMO

Nitric oxide (NO) is a key immune defense agent that is produced from l-arginine in the airways by leukocytes and airway epithelial cells, primarily via inducible nitric oxide synthase (iNOS). Deficiencies in nasal NO levels have been associated with diseases such as primary ciliary dyskinesia and chronic rhinosinusitis. Herein, we demonstrate a proof-of-concept regarding a potential new therapeutic approach for such disorders. We show that arginine-rich low molecular weight peptides (LMWPs) derived from the FDA-approved protamine (obtained from salmon sperm) are effective at significantly raising NO production in both RAW 264.7 mouse macrophage and LA4 mouse epithelial cell lines. LMWP is produced using a stable, easily produced immobilized thermolysin gel column followed by size-exclusion purification. Monomeric l-arginine induces concentration-dependent increases in NO production in stimulated RAW 264.7 and LA4 cells, as measured by stable nitrite in the cell media. In stimulated RAW 264.7 cells, LMWP significantly increases iNOS expression and total NO production 12-24 h post-treatment compared to cells given equivalent levels of monomeric l-arginine. For stimulated LA4 cells, LMWPs are effective in significantly increasing NO production compared to equivalent l-arginine monomer concentrations over 24 h but do not substantially enhance iNOS expression. The use of the arginase inhibitor S-boronoethyl-l-cysteine in combination with LMWPs results in even higher NO production by stimulated RAW 264.7 cells and LA4 cells. Increases in NO due to LMWPs, compared to l-arginine, occur only after 4 h, which may be due to iNOS elevation rather than increased substrate availability.


Assuntos
Óxido Nítrico Sintase Tipo II/metabolismo , Peptídeos/uso terapêutico , Protaminas/uso terapêutico , Rinite Alérgica/tratamento farmacológico , Animais , Arginase/metabolismo , Arginina/metabolismo , Linhagem Celular , Cisteína/metabolismo , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Camundongos , Peso Molecular , Óxido Nítrico/metabolismo , Nitritos/metabolismo , Rinite Alérgica/metabolismo
14.
Thorax ; 68(2): 131-41, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23099361

RESUMO

BACKGROUND: Decreased activity of forkhead transcription factor class O (FoxO)3A, a negative regulator of NF-κB-mediated chemokine expression, is implicated in the pathogenesis of chronic obstructive pulmonary disease (COPD). Previously, we showed that quercetin reduces lung inflammation in a murine model of COPD. Here, we examined the mechanisms underlying decreased FoxO3A activation and its modulation by quercetin in COPD human airway epithelial cells and in a COPD mouse model. METHODS: Primary COPD and normal human airway epithelial cells were treated with quercetin, LY294002 or erlotinib for 2 weeks. IL-8 was measured by ELISA. FoxO3A, Akt, and epidermal growth factor (EGF) receptor (EGFR) phosphorylation and nuclear FoxO3A levels were determined by Western blot analysis. Effects of quercetin on lung chemokine expression, nuclear FoxO3A levels and phosphorylation of EGFR and Akt were determined in COPD mouse model. RESULTS: Compared with normal, COPD cells showed significantly increased IL-8, which negatively correlated with nuclear FoxO3A levels. COPD bronchial biopsies also showed reduced nuclear FoxO3A. Decreased FoxO3A in COPD cells was associated with increased phosphorylation of EGFR, Akt and FoxO3A and treatment with quercetin, LY294002 or erlotinib increased nuclear FoxO3A and decreased IL-8 and phosphorylation of Akt, EGFR and FoxO3A, Compared with control, elastase/LPS-exposed mice showed decreased nuclear FoxO3A, increased chemokines and phosphorylation of EGFR and Akt. Treatment with quercetin partially reversed these changes. CONCLUSIONS: In COPD airways, aberrant EGFR activity increases PI 3-kinase/Akt-mediated phosphorylation of FoxO3A, thereby decreasing nuclear FoxO3A and increasing chemokine expression. Quercetin restores nuclear FoxO3A and reduces chemokine expression partly by modulating EGFR/PI 3-kinase/Akt activity.


Assuntos
Receptores ErbB/metabolismo , Fatores de Transcrição Forkhead/metabolismo , Interleucina-8/metabolismo , Doença Pulmonar Obstrutiva Crônica/metabolismo , Mucosa Respiratória/metabolismo , Animais , Antioxidantes/administração & dosagem , Antioxidantes/farmacologia , Brônquios/efeitos dos fármacos , Brônquios/metabolismo , Núcleo Celular/química , Modelos Animais de Doenças , Inibidores Enzimáticos/administração & dosagem , Inibidores Enzimáticos/farmacologia , Proteína Forkhead Box O3 , Humanos , Imuno-Histoquímica , Interleucina-8/biossíntese , Camundongos , Camundongos Endogâmicos C57BL , Proteína Oncogênica v-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Fosforilação , Quercetina/administração & dosagem , Quercetina/farmacologia , Mucosa Respiratória/efeitos dos fármacos
15.
PLoS Pathog ; 8(10): e1002969, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23055935

RESUMO

Bacterial infections following rhinovirus (RV), a common cold virus, are well documented, but pathogenic mechanisms are poorly understood. We developed animal and cell culture models to examine the effects of RV on subsequent infection with non-typeable Hemophilus influenzae (NTHi). We focused on NTHI-induced neutrophil chemoattractants expression that is essential for bacterial clearance. Mice infected with RV1B were superinfected with NTHi and lung bacterial density, chemokines and neutrophil counts determined. Human bronchial epithelial cells (BEAS-2B) or mouse alveolar macrophages (MH-S) were infected with RV and challenged with NHTi, TLR2 or TLR5 agonists. Chemokine levels were measured by ELISA and expression of IRAK-1, a component of MyD88-dependent TLR signaling, assessed by immunoblotting. While sham-infected mice cleared all NTHi from the lungs, RV-infected mice showed bacteria up to 72 h post-infection. However, animals in RV/NTHi cleared bacteria by day 7. Delayed bacterial clearance in RV/NTHi animals was associated with suppressed chemokine levels and neutrophil recruitment. RV-infected BEAS-2B and MH-S cells showed attenuated chemokine production after challenge with either NTHi or TLR agonists. Attenuated chemokine responses were associated with IRAK-1 protein degradation. Inhibition of RV-induced IRAK-1 degradation restored NTHi-stimulated IL-8 expression. Knockdown of TLR2, but not other MyD88-dependent TLRs, also restored IRAK-1, suggesting that TLR2 is required for RV-induced IRAK-1 degradation.In conclusion, we demonstrate for the first time that RV infection delays bacterial clearance in vivo and suppresses NTHi-stimulated chemokine responses via degradation of IRAK-1. Based on these observations, we speculate that modulation of TLR-dependent innate immune responses by RV may predispose the host to secondary bacterial infection, particularly in patients with underlying chronic respiratory disorders.


Assuntos
Infecções por Haemophilus/complicações , Infecções por Haemophilus/imunologia , Haemophilus influenzae/imunologia , Quinases Associadas a Receptores de Interleucina-1/metabolismo , Interleucina-8/imunologia , Infecções por Picornaviridae/complicações , Rhinovirus/patogenicidade , Receptor 2 Toll-Like/metabolismo , Animais , Carga Bacteriana , Quimiocinas/sangue , Células Epiteliais/imunologia , Células Epiteliais/microbiologia , Células Epiteliais/virologia , Infecções por Haemophilus/microbiologia , Humanos , Contagem de Leucócitos , Pulmão/microbiologia , Macrófagos Alveolares/imunologia , Macrófagos Alveolares/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Neutrófilos/imunologia , Infecções por Picornaviridae/virologia , Receptor 2 Toll-Like/genética , Receptor 5 Toll-Like/metabolismo
16.
Cardiovasc Toxicol ; 12(4): 304-11, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22588841

RESUMO

Epidemiological studies have shown that high glucose levels and oxidative stress cause elevation of advanced glycation end products (AGEs) that are known to contribute to diabetic complications. Thus, agents that hamper reactive oxygen species (ROS) load can be used as a potential drug against AGEs-mediated complications. Hence, the present study investigated the protective role of gallic acid (GA) against the effects of AGEs in cardiac H9C2(2-1) cells. Exposure of cells to AGEs resulted in release of ROS (P < 0.05) with significant (P < 0.05) decline in antioxidant enzyme levels and increase in collagen (P < 0.01) content. In addition, the altered mitochondrial membrane potential (mmp) (P < 0.01) was also observed in cells exposed to AGEs, whereas AGEs-exposed cells pretreated with GA prevented the release of ROS, and there were no significant changes in the antioxidant status, collagen content and mmp. Thus, the results of the present study provide evidence that GA exhibits protective role against AGEs-induced cardiovascular complications probably through its free radical scavenging activity.


Assuntos
Cardiotônicos/farmacologia , Proliferação de Células/efeitos dos fármacos , Ácido Gálico/farmacologia , Produtos Finais de Glicação Avançada/toxicidade , Miócitos Cardíacos/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Animais , Antioxidantes/farmacologia , Linhagem Celular , Miócitos Cardíacos/citologia , Miócitos Cardíacos/metabolismo , Miofibroblastos/citologia , Miofibroblastos/efeitos dos fármacos , Miofibroblastos/metabolismo , Estresse Oxidativo/fisiologia , Ratos , Espécies Reativas de Oxigênio/metabolismo
17.
J Clin Diagn Res ; 6(9): 1478-82, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23285434

RESUMO

BACKGROUND: Urinary tract infections are the most commonly acquired bacterial infections and they account for an estimated 25-40% of the nosocomial infections. The microbial biofilms pose a public health problem for the persons who require indwelling medical devices, as the microorganisms in the biofilms are difficult to treat with antimicrobial agents. AIMS: The present study included the isolation and the biofilm formation of the uropathogens in patients with catheter associated urinary tract infections. METHODS AND MATERIALS: This prospective analysis which was carried out over a period of two months, included 50 urine samples from catheterized patients with symptoms of UTI. Following their isolation and identification, all the isolates were subjected to the biofilm detection by the tube adherence method and the Congo Red agar method. RESULTS: E.coli was found to be the most frequently isolated uropathogen 35(70%), followed by Klebsiella pneumoniae 8(16%), Pseudomona aeruginosa 2(4%), Acinetobacter spp 1(2%), coagulase negative Staphylococci 3(6%) and Enterococci spp 1(2%). In the current study, 30 (60%) strains were positive in vitro for the biofilm production. CONCLUSION: To conclude, there was significant bacteriuria in all the symptomatic catheterized patients and E.coli was the most frequent isolate. Diabetes (44%) was the most common factor which was associated with the UTIs in the catheterized patients.

18.
Infect Immun ; 79(10): 4131-45, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21825067

RESUMO

Despite increased morbidity associated with secondary respiratory viral infections in cystic fibrosis (CF) patients with chronic Pseudomonas aeruginosa infection, the underlying mechanisms are not well understood. Here, we investigated the effect of P. aeruginosa infection on the innate immune responses of bronchial epithelial cells to rhinovirus (RV) infection. CF cells sequentially infected with mucoid P. aeruginosa (MPA) and RV showed lower levels of interferons (IFNs) and higher viral loads than those of RV-infected cells. Unlike results for CF cells, normal bronchial epithelial cells coinfected with MPA/RV showed higher IFN expression than RV-infected cells. In both CF and normal cells, the RV-stimulated IFN response requires phosphorylation of Akt and interferon response factor 3 (IRF3). Preinfection with MPA inhibited RV-stimulated Akt phosphorylation and decreased IRF3 phosphorylation in CF cells but not in normal cells. Compared to normal, unstimulated CF cells or normal cells treated with CFTR inhibitor showed increased reactive oxygen species (ROS) production. Treatment of CF cells with antioxidants prior to MPA infection partially reversed the suppressive effect of MPA on the RV-stimulated IFN response. Together, these results suggest that MPA preinfection inhibits viral clearance by suppressing the antiviral response particularly in CF cells but not in normal cells. Further, increased oxidative stress in CF cells appears to modulate the innate immune responses to coinfection.


Assuntos
Brônquios , Fibrose Cística/imunologia , Células Epiteliais , Interferons/metabolismo , Pseudomonas aeruginosa/patogenicidade , Rhinovirus/imunologia , Adolescente , Adulto , Antivirais/imunologia , Antivirais/metabolismo , Brônquios/citologia , Brônquios/imunologia , Brônquios/microbiologia , Brônquios/virologia , Células Cultivadas , Fibrose Cística/complicações , Fibrose Cística/microbiologia , Fibrose Cística/virologia , Células Epiteliais/imunologia , Células Epiteliais/microbiologia , Células Epiteliais/virologia , Feminino , Humanos , Imunidade Inata/imunologia , Interferons/imunologia , Masculino , Estresse Oxidativo , Infecções por Picornaviridae/complicações , Infecções por Picornaviridae/imunologia , Infecções por Picornaviridae/virologia , Infecções por Pseudomonas/complicações , Infecções por Pseudomonas/imunologia , Infecções por Pseudomonas/microbiologia , Adulto Jovem
19.
PLoS Pathog ; 7(5): e1002070, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21637773

RESUMO

Rhinovirus (RV), a single-stranded RNA picornavirus, is the most frequent cause of asthma exacerbations. We previously demonstrated in human bronchial epithelial cells that melanoma differentiation-associated gene (MDA)-5 and the adaptor protein for Toll-like receptor (TLR)-3 are each required for maximal RV1B-induced interferon (IFN) responses. However, in vivo, the overall airway response to viral infection likely represents a coordinated response integrating both antiviral and pro-inflammatory pathways. We examined the airway responses of MDA5- and TLR3-deficient mice to infection with RV1B, a minor group virus which replicates in mouse lungs. MDA5 null mice showed a delayed type I IFN and attenuated type III IFN response to RV1B infection, leading to a transient increase in viral titer. TLR3 null mice showed normal IFN responses and unchanged viral titers. Further, RV-infected MDA5 and TLR3 null mice showed reduced lung inflammatory responses and reduced airways responsiveness. Finally, RV-infected MDA5 null mice with allergic airways disease showed lower viral titers despite deficient IFN responses, and allergic MDA5 and TLR3 null mice each showed decreased RV-induced airway inflammatory and contractile responses. These results suggest that, in the context of RV infection, binding of viral dsRNA to MDA5 and TLR3 initiates pro-inflammatory signaling pathways leading to airways inflammation and hyperresponsiveness.


Assuntos
Hiper-Reatividade Brônquica/fisiopatologia , Hiper-Reatividade Brônquica/virologia , RNA Helicases DEAD-box/fisiologia , Inflamação/fisiopatologia , Inflamação/virologia , Rhinovirus/fisiologia , Transdução de Sinais/fisiologia , Receptor 3 Toll-Like/fisiologia , Animais , Hiper-Reatividade Brônquica/metabolismo , Modelos Animais de Doenças , Inflamação/metabolismo , Helicase IFIH1 Induzida por Interferon , Interferons/metabolismo , Pulmão/metabolismo , Pulmão/fisiopatologia , Pulmão/virologia , Pneumopatias/metabolismo , Pneumopatias/fisiopatologia , Pneumopatias/virologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Infecções por Picornaviridae/metabolismo , Infecções por Picornaviridae/fisiopatologia , Infecções por Picornaviridae/virologia , RNA de Cadeia Dupla/metabolismo , RNA Viral/metabolismo , Rhinovirus/isolamento & purificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...