Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Anim Biosci ; 36(1): 84-97, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36108697

RESUMO

OBJECTIVE: One hundred hybrid male ducks (Mojosari×Alabio) were used to examine the efficacy of chicory supplementation as nutritional feed manipulation on production performance, and blood lipid profile of hybrid ducks. METHODS: The ducks were tagged, weighed, and then allotted randomly to one of the four treatment diets using a completely randomized design. The experimental diets were: i) P0 (100% basal diets+0% chicory as control), ii) P1 (95% basal diets+5% chicory), iii) P2 (90% basal diets+10% chicory) and iv) P3 (85% basal diets+15% chicory). For each treatment group, there were 5 replicates of 5 birds each. All experimental diets were isonitrogenous and isocaloric using locally available ingredients. RESULTS: Hybrid ducks with fed diets supplemented fresh chicory (5%, 10%, and 15%) showed increased feed intake and body weight gain, as well as feed conversion ratio to be smaller than those ducks fed diets without chicory supplementation (control). The ducks fed 10% chicory supplementation contained significantly (p<0.05) lower ash and higher organic matter contents of meat than those ducks fed other diets. The ducks fed 15% chicory supplementation showed the lowest crude protein and cholesterol content of meat among the treatment diets. Ducks fed chicory supplementation showed lower (p<0.05) blood cholesterol and triglyceride levels than those ducks fed without chicory supplementation, while dietary interventions had no major (p>0.05) influence on low-density lipoprotein and high-density lipoprotein levels in duck blood. CONCLUSION: In this study, 10% chicory supplementation showed the best results characterized by an increase in growth performance, carcass quality, small intestinal histomorphology, and lower cholesterol levels of meat.

2.
Heliyon ; 8(11): e11315, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36387516

RESUMO

In the present work, cellulose nanocrystals (CNCs) were successfully produced from the Pennisetum purpureum (PP) fibers through ammonium persulfate (APS) oxidation. The effect of oxidation temperatures (60, 70, and 80 °C) on the properties of CNCs was characterized. In addition, the influence of CNCs addition (0, 0.05, 0.1, and 0.2 wt%) on the lubrication properties of the base oil SAE 40 lubricant was also investigated. The characteristics of the CNCs were determined by using FT-IR, XRD, TEM, and TGA. The lubrication properties were evaluated using kinematic viscosity and viscosity index measurements. The optimal oxidation temperature was found at 60 °C which resulted in the needle-shaped CNCs particles with high crystallinity (66.56%), an average diameter (15 nm), and an average length (79 nm). The resulting CNCs exhibited higher thermal stability than the PP fibers. Both kinematic viscosity and viscosity index did not significantly change by increasing the CNCs contents. However, a slightly higher viscosity index was exhibited for 0.2 wt% CNCs compared to that of neat base oil SAE 40. The CNCs obtained had high potential as a reinforcing agent of nanocomposites and also as a bio-lubricating additive in engine oil.

3.
Saudi J Biol Sci ; 29(10): 103404, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36033927

RESUMO

Honey is rich in bioactive compounds, phenolic acids, and flavonoids and is an antioxidant and an immunomodulator. The objectives of this study were to determine the honey chemical composition of Indonesian stingless bees and their potential roles as an immunomodulator in the malnourished rats. Tetragonula laeviceps honey was used to analyses of chemical composition was obtained from three different geographical origins were Depok Sleman, Bayan Lombok, and Nglipar Gunungkidul. Thirty-two rats were divided into four groups of 8 rats and placed in individual cages. The experimental designed was as follows: T1 = normal rats + without honey (0-7 weeks), T2 = normal rats + with honey of 1.8 g/kg BW/day (0-7 weeks), T3 = malnourished honey of 1.8 g/kg BW/day started from 2 weeks after the malnourished condition (2-7 weeks). The results showed that the chemical composition of Tetragonula laeviceps honey from three different geographical origins were vitamin C content (6.49-13.58 mg/100 g), total phenolic content (0.65-2.30% GAE/100 g), total flavonoid content (0.28-1.00 mg QE/g), and antioxidant activity DPPH (61.43-90.28%). The application of fresh honey from stingless bee that was offered to either normal or malnourished rats were increased lymphocytes proliferation and decreased the production of both proinflammatory markers, interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α) from tissue culture supernatant of lymphocytes (p < 0.01). Data from this study clearly indicates the potential role of honey from stingless bee as an immunomodulator in malnourished rats.

4.
J Adv Vet Anim Res ; 9(2): 175-183, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35891665

RESUMO

Objectives: The goal of this research was to figure out the effect of the local sorghum as silage on the performance of Bligon goats. Microbial protein synthesis, digestible nutrients, and average daily weight gain (ADWG) were measured to evaluate the goats' performance. Materials and Methods: The study was designed in a completely randomized design with a one-way pattern. Twelve female Bligon goats with 24.33 ± 2.83 kg (mean ± SEM) initial body weight were divided into three groups of total mixed ration (TMR) treatments. Group 1 received fresh Napier grass (FNG) as a control, group 2 received imported sorghum silage (ISS) of brown midrib resistance (BMR), and group 3 received local sorghum silage (LSS) of super-2. Analysis of variance was used to analyze the data on microbial protein synthesis and feed intake during the research. On the contrary, analysis of covariance was used to analyze ADWG with initial weight as a covariate. Results: Microbial protein synthesis, feed-intake, and ADWG of goats that received TMR based on silage of two varieties of sorghum, namely BMR (ISS) and super-2 (LSS), were lower (p < 0.05) than control. However, there was no significant difference between both TMR based on sorghum silages. ISS's feed conversion was better than LSS (p < 0.05), and FNG was the best. Sorghum silage as a basal ration in TMR had lower microbial protein synthesis but higher total digestible nutrient content than fresh forage, such as Napier grass. The sorghum varieties did not affect the microbial protein synthesis, digestible nutrients, and ADWG of Bligon goats. However, ISS treatment had higher feed efficiency than LSS. Conclusion: The local sorghum (super-2) silage can be used as ruminant feed as well as imported sorghum (BMR) offered as TMR. However, regardless of the cultivar, TMR based on sorghum silage cannot replace TMR based on fresh Napier grass.

5.
Plants (Basel) ; 11(9)2022 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-35567264

RESUMO

Warm-season grasses are C4 plants and have a high capacity for biomass productivity. These grasses are utilized in many agricultural production systems with their greatest value as feeds for livestock, bioethanol, and turf. However, many important warm-season perennial grasses multiply either by vegetative propagation or form their seeds by an asexual mode of reproduction called apomixis. Therefore, the improvement of these grasses by conventional breeding is difficult and is dependent on the availability of natural genetic variation and its manipulation through breeding and selection. Recent studies have indicated that plant tissue culture system through somatic embryogenesis complements and could further develop conventional breeding programs by micropropagation, somaclonal variation, somatic hybridization, genetic transformation, and genome editing. This review summarizes the tissue culture and somatic embryogenesis in warm-season grasses and focus on current status and above applications including the author's progress.

6.
Plant Biotechnol (Tokyo) ; 34(3): 143-150, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-31275020

RESUMO

Napier grass (Pennisetum purpureum Schumach.) is a highly productive C4 tropical forage grass that has been targeted as a potential bioenergy crop. To further increase the efficiency of bioethanol production by molecular breeding, a reliable protocol for genetically transforming napier grass is essential. In this study, we report the creation of transgenic napier grass plants derived from embryogenic callus cultures of shoot apices. Embryogenic callus was initiated in three accessions of napier grass and a napier grass×pearl millet hybrid using Murashige and Skoog (MS) medium supplemented with 2.0 mg L-1 2,4-dichlorophenoxyacetic acid (2,4-D), 0.5 mg L-1 6-benzylaminopurine (BAP) and 50 µM copper sulfate (CuSO4). Of the accessions tested, a dwarf type with late-heading (DL line) had the best response for embryogenic callus formation. Highly regenerative calli that formed dense polyembryogenic clusters were selected as target tissues for transformation. A plasmid vector, pAHC25, containing an herbicide-resistance gene (bar) and the ß-glucuronidase (GUS) reporter gene was used in particle bombardment experiments. Target tissues treated with 0.6 M osmoticum were bombarded, and transgenic plants were selected under 5.0 mg L-1 bialaphos selection. Although a total of 1400 target tissues yielded nine GUS-positive bialaphos-resistant calli, only one transgenic line that was derived from target tissue with the shortest culture term produced four transgenic plants. Thus, the length of time that the target tissue is in callus culture was one of the most important factors for acquiring transgenic plants in napier grass. This is the first report of successfully producing transgenic napier grass plants.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...