Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 19(7): e0305842, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39046940

RESUMO

BACKGROUND: As the global community begins recovering from the COVID-19 pandemic, the challenges due to its aftermath remain. This health crisis has highlighted challenges associated with airborne pathogens and their capacity for rapid transmission. While many solutions have emerged to tackle this challenge, very few devices exist that are inexpensive, easy to manufacture, and versatile enough for various settings. METHODS: This paper presents a novel suction device designed to counteract the spread of aerosols and droplets and be cost-effective and adaptable to diverse environments. We also conducted an experimental study to evaluate the device's effectiveness using an artificial cough generator, a particle counter, and a mannequin in an isolated system. We measured droplet removal rates with simulated single and repeated cough incidents. Also, measurements were taken at four distinct areas to compare its effectiveness on direct plume versus indirect particle removal. RESULTS: The device reduced airborne disease transmission risk, as evidenced by its capacity to decrease the half-life of aerosol volume from 23.6 minutes to 15.6 minutes, effectively capturing aerosol-sized droplets known for their extended airborne persistence. The suction device lessened the peak total droplet volume from peak counts. At 22 minutes post peak droplet count, the count had dropped 24% without the suction device and 43% with the suction device. CONCLUSIONS: The experiment's findings confirm the suction device's capability to effectively remove droplets from the environment, making it a vital tool in enhancing indoor air quality. Given the sustained performance of the suction device irrespective of single or multiple cough events, this demonstrates its potential utility in reducing the risk of airborne disease transmission. 3D printing for fabrication opens the possibility of a rapid iterative design process, flexibility for different configurations, and rapid global deployment for future pandemics.


Assuntos
Aerossóis , COVID-19 , Tosse , SARS-CoV-2 , Humanos , COVID-19/prevenção & controle , COVID-19/transmissão , Sucção/instrumentação , Manequins , Desenho de Equipamento , Pandemias/prevenção & controle , Aerossóis e Gotículas Respiratórios
2.
IEEE J Transl Eng Health Med ; 12: 119-128, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38088993

RESUMO

The objective of this study was to develop an interpretable system that could detect specific lung features in neonates. A challenging aspect of this work was that normal lungs showed the same visual features (as that of Pneumothorax (PTX)). M-mode is typically necessary to differentiate between the two cases, but its generation in clinics is time-consuming and requires expertise for interpretation, which remains limited. Therefore, our system automates M-mode generation by extracting Regions of Interest (ROIs) without human in the loop. Object detection models such as faster Region Based Convolutional Neural Network (fRCNN) and RetinaNet models were employed to detect seven common Lung Ultrasound (LUS) features. fRCNN predictions were then stored and further used to generate M-modes. Beyond static feature extraction, we used a Hough transform based statistical method to detect "lung sliding" in these M-modes. Results showed that fRCNN achieved a greater mean Average Precision (mAP) of 86.57% (Intersection-over-Union (IoU) = 0.2) than RetinaNet, which only displayed a mAP of 61.15%. The calculated accuracy for the generated RoIs was 97.59% for Normal videos and 96.37% for PTX videos. Using this system, we successfully classified 5 PTX and 6 Normal video cases with 100% accuracy. Automating the process of detecting seven prominent LUS features addresses the time-consuming manual evaluation of Lung ultrasound in a fast paced environment. Clinical impact: Our research work provides a significant clinical impact as it provides a more accurate and efficient method for diagnosing lung diseases in neonates.


Assuntos
Pneumonia , Pneumotórax , Humanos , Recém-Nascido , Pulmão/diagnóstico por imagem , Redes Neurais de Computação , Pneumotórax/diagnóstico por imagem , Tórax
3.
Annu Int Conf IEEE Eng Med Biol Soc ; 2021: 3029-3034, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34891882

RESUMO

Over the last few decades, Lung Ultrasound (LUS) has been increasingly used to diagnose and monitor different lung diseases in neonates. It is a noninvasive tool that allows a fast bedside examination while minimally handling the neonate. Acquiring a LUS scan is easy, but understanding the artifacts concerned with each respiratory disease is challenging. Mixed artifact patterns found in different respiratory diseases may limit LUS readability by the operator. While machine learning (ML), especially deep learning can assist in automated analysis, simply feeding the ultrasound images to an ML model for diagnosis is not enough to earn the trust of medical professionals. The algorithm should output LUS features that are familiar to the operator instead. Therefore, in this paper we present a unique approach for extracting seven meaningful LUS features that can be easily associated with a specific pathological lung condition: Normal pleura, irregular pleura, thick pleura, A- lines, Coalescent B-lines, Separate B-lines and Consolidations. These artifacts can lead to early prediction of infants developing later respiratory distress symptoms. A single multi-class region proposal-based object detection model faster-RCNN (fRCNN) was trained on lower posterior lung ultrasound videos to detect these LUS features which are further linked to four common neonatal diseases. Our results show that fRCNN surpasses single stage models such as RetinaNet and can successfully detect the aforementioned LUS features with a mean average precision of 86.4%. Instead of a fully automatic diagnosis from images without any interpretability, detection of such LUS features leave the ultimate control of diagnosis to the clinician, which can result in a more trustworthy intelligent system.


Assuntos
Doenças do Recém-Nascido , Pneumopatias , Humanos , Recém-Nascido , Pulmão/diagnóstico por imagem , Pneumopatias/diagnóstico por imagem , Tórax , Ultrassonografia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...