Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Polym Environ ; 30(4): 1244-1263, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34518763

RESUMO

Recently discovered SARS-CoV-2 caused a pandemic that triggered researchers worldwide to focus their research on all aspects of this new peril to humanity. However, in the absence of specific therapeutic intervention, some preventive strategies and supportive treatment minimize the viral transmission as studied by some factors such as basic reproduction number, case fatality rate, and incubation period in the epidemiology of viral diseases. This review briefly discusses coronaviruses' life cycle of SARS-CoV-2 in a human host cell and preventive strategies at some selected source of infection. The antiviral activities of synthetic and natural polymers such as chitosan, hydrophobically modified chitosan, galactosylated chitosan, amine-based dendrimers, cyclodextrin, carrageenans, polyethyleneimine, nanoparticles are highlighted in this article. Mechanism of virus inhibition, detection and diagnosis are also presented. It also suggests that polymeric materials and nanoparticles can be effective as potential inhibitors and immunization against coronaviruses which would further develop new technologies in the field of polymer and nanoscience.

2.
Sensors (Basel) ; 20(19)2020 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-32977576

RESUMO

There is an increasing demand for sustainable and safe packaging technologies to improve consumer satisfaction, reduce food loss during storage and transportation, and track the quality status of food throughout its distribution. This study reports the fabrication of colorimetric pH-indicative and flame-retardant nanocomposite films (NCFs) based on polyvinyl alcohol (PVA) and nanoclays for smart and safe food packaging applications. Tough, flexible, and transparent NCFs were obtained using 15% nanoclay loading (PVA-15) with superior properties, including low solubility/swelling in water and high thermal stability with flame-retardant behavior. The NCFs showed average mechanical properties that are comparable to commercial films for packaging applications. The color parameters were recorded at different pH values and the prepared NCFs showed distinctive colorimetric pH-responsive behavior during the transition from acidic to alkaline medium with high values for the calculated color difference (∆E ≈ 50). The prepared NCFs provided an effective way to detect the spoilage of the shrimp samples via monitoring the color change of the NCFs during the storage period. The current study proposes the prepared NCFs as renewable candidates for smart food packaging featuring colorimetric pH-sensing for monitoring food freshness as well as a safer alternative choice for applications that demand films with fire-retardant properties.

3.
Int J Biol Macromol ; 155: 730-739, 2020 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-32251746

RESUMO

This article reports the isolation and characterization of microcrystalline cellulose from date seeds of the date palm tree. The raw ground date seeds (RG-DS) are composed of cellulose matrix wrapped by lignin and hemicellulose as amorphous components. Cellulose was isolated from RG-DS through the following sequence: dewaxing, delignification/(bleaching) and acid hydrolysis. FTIR and Raman analysis for the bleached date seeds (B-DS) revealed the successful removal of the amorphous components from the polymer matrix. The X-ray diffractogram of the obtained (B-DS) exhibited the characteristic peaks of native cellulose (type I), with a crystallinity index (CrI = 62%). An additional acid hydrolysis step was used to convert native cellulose into microcrystalline cellulose (MCC-DS) with higher crystallinity (CrI = 70%). SEM analysis showed that the obtained microcrystals exhibit agglomerated and irregular elongated or semi-spherical shaped morphology. TEM analysis confirmed the semicrystalline nature of the MCC-DS. Thermal analysis showed enhanced thermal stability of MCC-DS. The current study shows the feasibility of using date seeds as a low-price source for obtaining MCC which is envisaged for applications in pharmaceutical and food industries as well as for preparing bionanocomposites with enhanced thermal properties.


Assuntos
Celulose/química , Celulose/isolamento & purificação , Lignina/análise , Phoeniceae/química , Sementes/química , Hidrólise
4.
Polymers (Basel) ; 10(3)2018 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-30966342

RESUMO

Solar photoelectric energy converted into electricity requires large surface areas with incident light and flexible materials to capture these light emissions. Currently, sunlight rays are converted to electrical energy using silicon polymeric material with efficiency up to 22%. The majority of the energy is lost during conversion due to an energy gap between sunlight photons and polymer energy transformation. This energy conversion also depends on the morphology of present polymeric materials. Therefore, it is very important to construct mechanisms of highest energy occupied molecular orbitals (HOMO)s and the lowest energy unoccupied molecular orbitals (LUMO)s to increase the efficiency of conversion. The organic and inorganic solar cells used as dyes can absorb more photons from sunlight and the energy gap will be less for better conversion of energy to electricity than the conventional solar cells. This paper provides an up-to-date review on the performance, characterization, and reliability of different composite polymeric materials for energy conversion. Specific attention has been given to organic solar cells because of their several advantages over others, such as their low-energy payback time, conversion efficiency and greenhouse emissions. Finally, this paper provides the recent progress on the application of both organic and inorganic solar cells for electric power generations together with several challenges that are currently faced.

5.
Sensors (Basel) ; 16(7)2016 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-27355953

RESUMO

A new optical pH sensor based on polysulfone (PSU) and polyaniline (PANI) was developed. A transparent and flexible PSU membrane was employed as a support. The electrically conductive and pH-responsive PANI was deposited onto the membrane surface by in situ chemical oxidative polymerization (COP). The absorption spectra of the PANI-coated PSU membranes exhibited sensitivity to pH changes in the range of 4-12, which allowed for designing a dual wavelength pH optical sensor. The performance of the membranes was assessed by measuring their response starting from high pH and going down to low pH, and vice versa. It was found that it is necessary to precondition the sensor layers before each measurement due to the slight hysteresis observed during forward and backward pH titrations. PSU membranes with polyaniline coating thicknesses in the range of ≈100-200 nm exhibited fast response times of <4 s, which are attributed to the porous, rough and nanofibrillar morphology of the polyaniline coating. The fabricated pH sensor was characterized by a sigmoidal response (R² = 0.997) which allows for pH determination over a wide dynamic range. All membranes were stable for a period of more than six months when stored in 1 M HCl solution. The reproducibility of the fabricated optical pH sensors was found to be <0.02 absorption units after one month storage in 1 M HCl solution. The performance of the optical pH sensor was tested and the obtained pH values were compared with the results obtained using a pH meter device.

6.
Spectrochim Acta A Mol Biomol Spectrosc ; 71(5): 1907-13, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-18799348

RESUMO

The torsional potentials, molecular conformations and vibrational spectra, of 2-, 3- and 4-formyl pyridine have been investigated using density functional theory (DFT) method with 6-31+G* basis set. From the calculations, 2-formyl pyridine and 3-formyl pyridine were predicted to exist predominantly in cis conformation with the cis-trans rotational barrier of 9.38 kcal/mol and 8.55 kcal/mol, respectively. The two equivalent planar structures of 4-formyl pyridine are separated by an energy barrier of 7.18 kcal/mol. The vibrational wavenumbers and the corresponding vibrational assignments of molecules in C(s) symmetry were examined theoretically and the calculated Infrared of the molecules in the cis conformation was plotted. Observed wavenumbers for normal modes were compared with those calculated from normal mode coordinate analysis carried out on the basis of DFT force fields using the standard 6-31+G* basis set of the theoretical optimized geometry.


Assuntos
Piridinas/química , Rotação , Vibração , Simulação por Computador , Modelos Biológicos , Modelos Moleculares , Conformação Molecular , Teoria Quântica , Análise Espectral
7.
Spectrochim Acta A Mol Biomol Spectrosc ; 66(4-5): 1133-40, 2007 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-16872884

RESUMO

The Molecular structure, conformational stability and vibrational frequencies of succinonitrile NCCH2CH2CN have been investigated with ab initio and density functional theory (DFT) methods implementing the standard 6-311++G* basis set. The potential energy surfaces (PES) have been explored at DFT-B3LYP, HF and MP2 levels of theory. In agreements with previous experimental results, the molecule was predicted to exist in equilibrium mixture of trans and gauche conforms with the trans form being slightly lower in energy. The vibrational frequencies and the corresponding vibrational assignments of succinonitrile in both C2h and C2 symmetry were examined theoretically and the calculated Infrared and Raman spectra of the molecule were plotted. Observed frequencies for normal modes were compared with those calculated from normal mode coordinate analysis carried out on the basis of ab initio and DFT force fields using the standard 6-311++G* basis set of the theoretical optimized geometry. Theoretical IR intensities and Raman activities are reported.


Assuntos
Modelos Químicos , Nitrilas/química , Análise Espectral Raman , Vibração , Conformação Molecular , Espectrofotometria Infravermelho , Termodinâmica
8.
Artigo em Inglês | MEDLINE | ID: mdl-16387539

RESUMO

Molecular structure and vibrational frequencies of carbamoyl azide NH2CO-NNN have been investigated with ab initio and density functional theory (DFT) methods. The molecular geometries for all the possible conformers of the molecule were optimized using DFT-B3LYP, DFT-BLYP and MP2 applying the standard 6-311++G** basis set. From the calculations, the molecule was predicted to exist predominantly in cis conformation with the cis-trans rotational barrier of about 7.91-9.10 kcal/mol depending on the level of theory applied. The vibrational frequencies and the corresponding vibrational assignments of carbamoyl azide in Cs symmetry were examined theoretically and the calculated Infrared and Raman spectra of the molecule in the cis conformation were plotted. Observed frequencies for normal modes were compare with those calculated from normal mode coordinate analysis carried out on the basis of ab initio and DFT force fields using the standard 6-311++G** basis set of the theoretical optimized geometry. Theoretical IR intensities and Raman activities are reported.


Assuntos
Azidas/química , Carbamatos/química , Espectrofotometria Infravermelho , Análise Espectral Raman
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...