Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
RSC Adv ; 13(50): 35369-35378, 2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-38053692

RESUMO

Herein, we demonstrated the in situ synthesis of g-C3N4/Ti3C2Tx nano-heterostructures for hydrogen generation under UV visible light irradiation. The formation of the g-C3N4/Ti3C2Tx nano-heterostructures was confirmed via powder X-ray diffraction and supported by XPS. The FE-SEM images indicated the formation of layered structures of MXene and g-C3N4. HR-TEM images and SAED patterns confirmed the presence of g-C3N4 together with Ti3C2Tx nanosheets, i.e., the formation of nano-heterostructures of g-C3N4/Ti3C2Tx. The absorption spectra clearly showed the distinct band gaps of g-C3N4 and Ti3C2Tx in the nano-heterostructure. The increase in PL intensity and broadening of the peak with an increase in g-C3N4 indicated the suppression of electron-hole recombination. Furthermore, the nano-heterostructure was used as a photocatalyst for H2 generation from water and methylene blue dye degradation. The highest H2 evolution (1912.25 µmol/0.1 g) with good apparent quantum yield (3.1%) and an efficient degradation of MB were obtained for gCT-0.75, which was much higher compared to that of the pristine materials. The gCT-0.75 nano-heterostructure possessed a high surface area and abundant vacancy defects, facilitating the separation of charge carriers, which was ultimately responsible for this high photocatalytic activity. Additionally, TRPL clearly showed a higher decay time, which supports the enhancement in the photocatalytic activity of the gCT-0.75 nano-heterostructure. The nano-heterostructure with the optimum concentration of g-C3N4 formed a hetero-junction with the linked catalytic system, which facilitated efficient charge carrier separation also responsible for the enhanced photocatalytic activity.

2.
RSC Adv ; 13(4): 2418-2426, 2023 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-36741188

RESUMO

Herein we have prepared the Ni-decorated SnS2 nanosheets with varying concentrations of Ni from 1 to 10 mol% (1, 2.5, 5, and 10 mol%) and studied their various physicochemical and photocatalytic properties. The chemical reduction technique was utilized to load the Ni nanoparticles on SnS2 nanosheets. The synthesized Ni decorated SnS2 (denoted as Ni-SnS2) was characterized using different spectroscopic techniques such as X-ray diffraction, diffuse reflectance UV-vis and photoluminescence spectroscopy, field emission scanning electron microscopy (FESEM), and field emission transmission electron microscopy (FETEM). XRD revealed the formation of the highly crystalline hexagonal phase of SnS2 but for nickel loading there is no additional peak observed. Further, the as-prepared Ni-SnS2 nano-photocatalyst shows absorption behaviour in the visible region, and photoluminescence spectra of the Ni-SnS2 nanostructures show band edge emission centred at 524 nm, and the peak intensity decreases with Ni loading. The FE-SEM and FE-TEM confirm the formation of hexagonal sheets having evenly distributed Ni nanoparticles of size ∼5-10 nm. BET surface area analysis was observed to be enhanced with Ni loading. The photocatalytic performance of the prepared Ni-SnS2 nanosheets was evaluated for hydrogen generation via water splitting under a 400 W mercury vapour lamp. Among the prepared Ni-SnS2 nanostructures, the Ni loaded with 2.5 mol% provided the highest hydrogen production i.e., 1429.2 µmol 0.1 g-1 (% AQE 2.32) in four hours, almost 1.6 times that of pristine SnS2 i.e., 846 µmol 0.1 g-1. Furthermore, the photocatalytic performance of the catalyst is also correlated with the photoconductivity by measuring the photocurrent. The photoconductivity of the samples is revealed to be stable and the conductivity of 2.5 mol% Ni-SnS2 is higher i.e. 20 times that of other Ni-SnS2 and pristine SnS2 catalysts.

3.
RSC Adv ; 11(13): 7587-7599, 2021 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-35423264

RESUMO

Highly crystalline anatase titanium dioxide (TiO2) nanocuboids were synthesized via a hydrothermal method using ethylenediamine tetraacetic acid as a capping agent. The structural study revealed the nanocrystalline nature of anatase TiO2 nanocuboids. Morphological study indicates the formation of cuboid shaped particles with thickness of ∼5 nm and size in the range of 10-40 nm. The UV-visible absorbance spectra of TiO2 nanocuboids showed a broad absorption with a tail in the visible-light region which is attributed to the incorporation of nitrogen atoms into the interstitial positions of the TiO2 lattice as well as the formation of carbonaceous and carbonate species on the surface of TiO2 nanocuboids. The specific surface areas of prepared TiO2 nanocuboids were found to be in the range of 85.7-122.9 m2 g-1. The formation mechanism of the TiO2 nanocuboids has also been investigated. Furthermore, the photocatalytic activities of the as-prepared TiO2 nanocuboids were evaluated for H2 generation via water splitting under UV-vis light irradiation and compared with the commercial anatase TiO2. TiO2 nanocuboids obtained at 200 °C after 48 h exhibited higher photocatalytic activity (3866.44 µmol h-1 g-1) than that of commercial anatase TiO2 (831.30 µmol h-1 g-1). The enhanced photoactivity of TiO2 nanocuboids may be due to the high specific surface area, good crystallinity, extended light absorption in the visible region and efficient charge separation.

4.
Photochem Photobiol Sci ; 18(6): 1503-1511, 2019 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-30972400

RESUMO

Herein, we synthesized ZnO nanorods using a solvothermal reaction technique at 200 °C for 24 h, and the prepared ZnO nanorods were decorated with silver (Ag) nanoparticles to enhance their photocatalytic activity. The Ag nanoparticles were photochemically deposited on the ZnO rods with varying molar concentrations (from 0.5 to 10 mol%), and their various physicochemical properties were studied. The prepared material was characterised using different spectroscopic techniques. XRD revealed the formation of a highly crystalline hexagonal phase of ZnO. For a higher silver loading (>5 mol%), separate peaks corresponding to cubic silver were observed in the XRD pattern. The photoluminescence spectra of the Ag/ZnO nanostructures show two distinct peaks at 390 and 500 nm; interestingly, the PL intensity of the ZnO emission peak at 500 nm decreases with an increase in the silver concentration. The diffuse reflectance spectra of Ag/ZnO indicate absorbance at 380 nm due to ZnO and a slight hump at 440 nm that corresponds to silver nanoparticles. The FE-SEM and TEM analysis indicates the formation of a hexagonal rod-like morphology, with the lengths of the rods ranging from around 50 to 200 nm and a diameter of around 30 nm. TEM also confirms the presence of Ag nanoparticles with sizes in the range of 20 to 30 nm on the surface of the ZnO nanorods. The photocatalytic activity of the Ag/ZnO nanostructures was evaluated by following the degradation of methylene blue (MB) dye under a 400 W mercury vapour lamp. ZnO with 10 mol% Ag loading shows the highest photocatalytic activity as compared to the 0.5, 1 & 5 mol% Ag-ZnO catalysts. The observed apparent rate constant for the photocatalytic MB degradation using 10 mol% Ag-ZnO (Kapp = 6.01 × 10-2 min-1) was six times that of pure ZnO (Kapp = 1.09 × 10-2 min-1). A gradual increase in the photocatalytic activity of Ag/ZnO was observed with an increase in the silver concentration. The photocurrent response of the prepared Ag-ZnO nanostructures was examined by a photoconductivity study. Moreover, the photocatalytic performance of the sample was correlated with the photoconductivity of the samples. The photoconductivity of the samples was stable, and the photoconductivity of 10 mol% Ag-ZnO was almost 20 times that of pure ZnO, resulting in a higher photocatalytic activity.

5.
Phys Chem Chem Phys ; 19(31): 20541-20550, 2017 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-28730203

RESUMO

We have demonstrated the synthesis of Ag3PO4/LaCO3OH (APO/LCO) heterostructured photocatalysts by an in situ wet chemical method. From pre-screening evaluations of photocatalysts with APO/(x wt% LCO) composites with mass ratios of x = 5, 10, 15, 20, 25 and 30 wt%, we found that the APO/LCO (20 wt%) exhibited a superior photocatalytic activity for organic pollutant remediation. Therefore, an optimised photocatalyst APO/LCO (20 wt%) is selected for the present study and we investigate the effect of a mixed solvent system (H2O:THF) on the morphology, which has a direct effect on the photocatalytic performance. Interestingly, a profound effect on the morphological features of APO/LCO20 heterostructures was observed with variation in the ratio of the solvent system. From the FESEM study it is observed that the LCO spherical nanoparticles are transformed into nanorods with the variation of THF into the solvent system. Moreover, these LCO nanorods make intimate contact with the APO microstructures which is helpful for the improvement of the photocatalytic activity. The photocatalytic activities of the APO/LCO composites with different solvent ratios were evaluated by the degradation of rhodamine B (RhB) under visible light irradiation. Excellent photocatalytic activity was observed for the APO/LCO-2 (H2O : THF = 60 : 40) sample. This might be due to uniform covering of the APO microstructures by fine LCO rod-like structures offering intimate contact between the APO and LCO and providing proper channels for the degradation reactions. Furthermore, with an increasing THF volume ratio in the reaction system there was an increase of the dimensions of the LCO rod-like structures and also a loose compactness of their uniform intimate contact between the APO/LCO heterostructures. All in all, the enhanced photocatalytic activity of the APO/LCO heterostructures is attributed to the collective co-catalytic effect of LCO, by providing accelerated charge separation through the heterojunction interface, and THF, by helping to tune the unique morphological features which eventually facilitate the photocatalysis process.

6.
Dalton Trans ; 44(47): 20426-34, 2015 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-26508302

RESUMO

Magnetically separable Ag3PO4/NiFe2O4 (APO/NFO) composites were prepared by an in situ precipitation method. The photocatalytic activity of photocatalysts consisting of different APO/NFO mass ratios was evaluated by degradation of methylene blue (MB) under visible light irradiation. The excellent photocatalytic activity was observed using APO/NFO5 (5% NFO) composites with good cycling stability which is higher than that of pure Ag3PO4 and NiFe2O4. All the APO/NFO composites showed good magnetic behavior, which makes them magnetically separable after reaction and reusable for several experiments. Photoconductivities of pure and composite samples were examined to study the photoresponse characteristics. The current intensity greatly enhanced by loading NFO to APO. Furthermore, the photocatalytic performance of the samples is correlated with the conductivity of the samples. The enhancement in the photocatalytic activity of APO/NFO composites for MB degradation is attributed to the excellent conductivity of APO/NFO composites through the co-catalytic effect of NFO by providing accelerated charge separation through the n-n interface.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...