Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plant Cell Rep ; 42(12): 1927-1936, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37803214

RESUMO

KEY MESSAGE: Increase of ENHANCER OF SHOOT REGENERATION 2 expression was consistent to treatment with kinetin, TIS108, and KK094 in adventitious shoot formation of ipecac. Unlike many plant species, ipecac (Carapichea ipecacuanha (Brot.) L. Andersson) can form adventitious shoots in tissue culture without cytokinin (CK) treatment. Strigolactone (SL) biosynthesis and signaling inhibitors stimulate adventitious shoot formation in ipecac, suggesting their potential use as novel growth regulators in plant tissue culture, but the molecular mechanism of their action is unclear. In this study, we compared the effects of SL-related inhibitors (TIS108 and KK094) and CKs (2iP, tZ, and kinetin) on adventitious shoot formation in ipecac. Exogenously applied SL-related inhibitors and CKs stimulated adventitious shoot formation. Combinations of SL-related inhibitors and kinetin also promoted adventitious shoot formation, but without additive effects. We also analyzed the expression of CK biosynthesis genes in ipecac. TIS108 increased the expression of the ipecac homolog of ISOPENTENYL TRANSFERASE 3 (CiIPT3) but decreased that of LONELY GUY 7 homolog (CiLOG7), presumably resulting in no change in 2iP-type CK levels. KK094 and kinetin increased CiLOG7 expression, elevating 2iP-type CK levels. Among pluripotency- and meristem-related genes, TIS108, KK094, and kinetin consistently increased the expression of ENHANCER OF SHOOT REGENERATION 2 homolog (CiESR2), which has a key role in shoot regeneration, in the internodal segment region that formed adventitious shoots. We propose that CiESR2 might be a key stimulator of adventitious shoot formation in ipecac.


Assuntos
Citocininas , Ipeca , Cinetina/farmacologia , Ipeca/farmacologia , Brotos de Planta , Citocininas/farmacologia , Reguladores de Crescimento de Plantas/farmacologia
2.
BMC Plant Biol ; 22(1): 361, 2022 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-35869421

RESUMO

BACKGROUND: In ipecac (Carapichea ipecacuanha (Brot.) L. Andersson), adventitious shoots can be induced simply by placing internodal segments on phytohormone-free culture medium. The shoots form locally on the epidermis of the apical region of the segments, but not the basal region. Levels of endogenous auxin and cytokinin transiently increase in the segments after 1 week of culture. RESULTS: Here, we conducted RNA-seq analysis to compare gene expression patterns in apical and basal regions of segments before culture and after 1 week of culture for adventitious shoot formation. The results revealed 8987 differentially expressed genes in a de novo assembly of 76,684 genes. Among them, 276 genes were upregulated in the apical region after 1 week of culture relative to before culture and the basal region after 1 week of culture. These genes include 18 phytohormone-response genes and shoot-formation-related genes. Validation of the gene expression by quantitative real-time PCR assay confirmed that the expression patterns were similar to those of the RNA-seq data. CONCLUSIONS: The transcriptome data show that expression of cytokinin biosynthesis genes is induced along with the acquisition of cellular pluripotency and the initiation of cell division by wounding in the apical region of internodal segments, that trigger adventitious shoot formation without callusing.


Assuntos
Ácidos Indolacéticos , Ipeca , Citocininas/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Ácidos Indolacéticos/metabolismo , Ipeca/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Brotos de Planta/genética , Brotos de Planta/metabolismo
3.
Planta ; 253(6): 123, 2021 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-34014387

RESUMO

MAIN CONCLUSION: SL inhibited adventitious shoot formation of ipecac, whereas the SL-related inhibitors promoted adventitious shoot formation. SL-related inhibitors might be useful as new plant growth regulators for plant propagation. In most plant species, phytohormones are required to induce adventitious shoots for propagating economically important crops and regenerating transgenic plants. In ipecac (Carapichea ipecacuanha (Brot.) L. Andersson), however, adventitious shoots can be formed without phytohormone treatment. Here we evaluated the effects of GR24 (a synthetic strigolactone, SL), SL biosynthetic inhibitors, and an SL antagonist on adventitious shoot formation during tissue culture of ipecac. We found that exogenously applied GR24 suppressed indole-3-acetic acid transport in internodal segments and decreased the number of adventitious shoots formed; in addition, the distribution of adventitious shoots changed from the apical to middle region of the internodal segments. In contrast, the SL-related inhibitors promoted adventitious shoot formation on both apical and middle regions of the segments. In particular, SL antagonist treatment increased endogenous cytokinin levels and induced multiple shoot development. These results indicate that SL inhibits adventitious shoot formation in ipecac. In ipecac, one of the shoots in each internodal segment becomes dominant and auxin derived from that shoot suppresses the other shoot growth. Here, this dominance was overcome by application of SL-related inhibitors. Therefore, SL-related inhibitors might be useful as new plant growth regulators to improve the efficiency of plant propagation in vitro.


Assuntos
Ácidos Indolacéticos , Ipeca , Compostos Heterocíclicos com 3 Anéis , Lactonas/farmacologia , Reguladores de Crescimento de Plantas/farmacologia , Brotos de Planta
4.
Plant Signal Behav ; 16(4): 1880738, 2021 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-33538220

RESUMO

Strigolactones (SLs) are a class of plant hormones that control plant architecture. SL levels in roots are determined by the nutrient conditions in the rhizosphere, especially the levels of nitrogen (N) and phosphorus (P). Our previous research showed that SL production is induced in response to deficiency of sulfur (S) as well as of N and P, and inhibits shoot branching, accelerates leaf senescence, and regulates lamina joint angle in rice. Here we show biomass, total S contents, and SL levels in rice under S-sufficient and S-deficient conditions using a split-root system. When one part of the root system was cultured in S-sufficient medium and the other in S-deficient medium (+S/-S), shoot fresh weight was unaffected relative to the +S/+S condition. The shoot weight significantly decreased in -S/-S condition. In contrast, there was no significant difference in root fresh weight between +S and -S conditions. In +S/-S condition, SL levels were systemically reduced in both parts, the shoot S content increased, but the root S content in S-deficient medium was unaffected relative to the -S/-S condition. These results suggest that shoots, not roots, recognize S deficiency, which induces SL production in roots.


Assuntos
Lactonas/metabolismo , Raízes de Plantas/metabolismo , Brotos de Planta/metabolismo , Enxofre/metabolismo , Biomassa , Plântula/metabolismo
5.
Plant Biotechnol (Tokyo) ; 37(3): 261-271, 2020 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-33088189

RESUMO

Statistical interferometric technique (SIT) is a highly sensitive, high speed non-contact, and non-destructive optical technique developed by our group capable of measuring instantaeoues sub-nanometer displacements. SIT applied to plant leaf elongation revealed nanometric intrinsic fluctuaitons (NIF) that are robust and sensitive to variations in the environment making NIF as a measure of healthiness of the plants. In this study, exogenous plant hormones, auxin (2,4-dichlorophenoxyacetic acid-2,4-D), and gibberellic acid (GA3), along with an auxin transport inhibitor 2,3,5-triiodobenzoic acid-TIBA, that affect plant growth were used to investigate their effects on NIF. Rice (Oriza sativa) seedlings were used, and their roots were exposed to 1, 2, and 4 µM 2,4-D, and the auxin transport inhibitor, TIBA, of 10, and 20 µM for 22 h and GA3 solution of different concentrations of 10, 40, and 100 µM for 5 h. Results showed significant increment in NIF for 1 µM and reduction for 4 µM 2,4-D while applicaiton of both 10, and 20 µM TIBA led to reduction in NIF. On the other hand, significant increment in NIF for 40 µM, and a significant reduction at a higher concentration of 100 µM for 5 hours of GA3 were also observed in comparison to those of control. Our results indicate that NIF as revealed by SIT could show both the positive and negative effects depending on the concentration of exogenous hormones, and transport inhibitors. Results suggest that SIT could be a valuable tool being sensitive enough to speedily assess the effects of plant growth hormones.

6.
Plant Direct ; 4(5): e00219, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32399509

RESUMO

Strigolactones (SLs) regulate important aspects of plant growth and stress responses. Many diverse types of SL occur in plants, but a complete picture of biosynthesis remains unclear. In Arabidopsis thaliana, we have demonstrated that MAX1, a cytochrome P450 monooxygenase, converts carlactone (CL) into carlactonoic acid (CLA) and that LBO, a 2-oxoglutarate-dependent dioxygenase, can convert methyl carlactonoate (MeCLA) into a metabolite called [MeCLA + 16 Da]. In the present study, feeding experiments with deuterated MeCLAs revealed that [MeCLA + 16 Da] is hydroxymethyl carlactonoate (1'-HO-MeCLA). Importantly, this LBO metabolite was detected in plants. Interestingly, other related compounds, methyl 4-hydroxycarlactonoate (4-HO-MeCLA) and methyl 16-hydroxycarlactonoate (16-HO-MeCLA), were also found to accumulate in lbo mutants. 3-HO-, 4-HO-, and 16-HO-CL were detected in plants, but their expected corresponding metabolites, HO-CLAs, were absent in max1 mutants. These results suggest that HO-CL derivatives may be predominant SLs in Arabidopsis, produced through MAX1 and LBO.

7.
Planta ; 251(3): 73, 2020 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-32140780

RESUMO

MAIN CONCLUSION: Endogenous auxin determines the pattern of adventitious shoot formation. Auxin produced in the dominant shoot is transported to the internodal segment and suppresses growth of other shoots. Adventitious shoot formation is required for the propagation of economically important crops and for the regeneration of transgenic plants. In most plant species, phytohormones are added to culture medium to induce adventitious shoots. In ipecac (Carapichea ipecacuanha (Brot.) L. Andersson), however, adventitious shoots can be formed without phytohormone treatment. Thus, ipecac culture allows us to investigate the effects of endogenous phytohormones during adventitious shoot formation. In phytohormone-free culture, adventitious shoots were formed on the apical region of the internodal segments, and a high concentration of IAA was detected in the basal region. To explore the relationship between endogenous auxin and adventitious shoot formation, we evaluated the effects of auxin transport inhibitors, auxin antagonists, and auxin biosynthesis inhibitors on adventitious shoot formation in ipecac. Auxin antagonists and biosynthesis inhibitors strongly suppressed adventitious shoot formation, which was restored by exogenously applied auxin. Auxin biosynthesis and transport inhibitors significantly decreased the IAA level in the basal region and shifted the positions of adventitious shoot formation from the apical region to the middle region of the segments. These data indicate that auxin determines the positions of the shoots formed on internodal segments of ipecac. Only one of the shoots formed grew vigorously; this phenomenon is similar to apical dominance. When the largest shoot was cut off, other shoots started to grow. Naphthalene-1-acetic acid treatment of the cut surface suppressed shoot growth, indicating that auxin produced in the dominant shoot is transported to the internodal segment and suppresses growth of other shoots.


Assuntos
Ácidos Indolacéticos/farmacologia , Ipeca/metabolismo , Brotos de Planta/efeitos dos fármacos , Brotos de Planta/crescimento & desenvolvimento , Transporte Biológico , Secções Congeladas , Ácidos Indolacéticos/metabolismo , Reguladores de Crescimento de Plantas , Raízes de Plantas/crescimento & desenvolvimento , Brotos de Planta/citologia , Plantas Geneticamente Modificadas/efeitos dos fármacos
8.
Front Plant Sci ; 11: 135, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32158457

RESUMO

Strigolactones (SLs) are a class of plant hormones that are synthesized from ß-carotene through sequential reactions catalyzed by DWARF (D) 27, D17, D10, and OsMORE AXILLARY GROWTH (MAX) 1 in rice (Oryza sativa L.). In rice, endogenous SL levels increase in response to deficiency of nitrogen, phosphate, or sulfate (-N, -P, or -S). Rice SL mutants show increased lamina joint (LJ) angle as well as dwarfism, delayed leaf senescence, and enhanced shoot branching. The LJ angle is an important trait that determines plant architecture. To evaluate the effect of endogenous SLs on LJ angle in rice, we measured LJ angle and analyzed the expression of SL-biosynthesis genes under macronutrient deficiencies. In the "Shiokari" background, LJ angle was significantly larger in SL mutants than in the wild-type (WT). In WT and SL-biosynthesis mutants, direct treatment with the SL synthetic analog GR24 decreased the LJ angle. In WT, deficiency of N, P, or S, but not of K, Ca, Mg, or Fe decreased LJ angle. In SL mutants, deficiency of N, P, or S had no such effect. We analyzed the time course of SL-related gene expression in the LJ of WT deficient in N, P, or S, and found that expression of SL-biosynthesis genes increased 2 or 3 days after the onset of deficiency. Expression levels of both the SL-biosynthesis and signaling genes was particularly strongly increased under -P. Rice cultivars "Nipponbare", "Norin 8", and "Kasalath" had larger LJ angle than "Shiokari", interestingly with no significant differences between WT and SL mutants. In "Nipponbare", endogenous SL levels increased and the LJ angle was decreased under -N and -P. These results indicate that SL levels increased in response to nutrient deficiencies, and that elevated endogenous SLs might negatively regulate leaf angle in rice.

9.
Nat Commun ; 10(1): 191, 2019 01 14.
Artigo em Inglês | MEDLINE | ID: mdl-30643123

RESUMO

The perception mechanism for the strigolactone (SL) class of plant hormones has been a subject of debate because their receptor, DWARF14 (D14), is an α/ß-hydrolase that can cleave SLs. Here we show via time-course analyses of SL binding and hydrolysis by Arabidopsis thaliana D14, that the level of uncleaved SL strongly correlates with the induction of the active signaling state. In addition, we show that an AtD14D218A catalytic mutant that lacks enzymatic activity is still able to complement the atd14 mutant phenotype in an SL-dependent manner. We conclude that the intact SL molecules trigger the D14 active signaling state, and we also describe that D14 deactivates bioactive SLs by the hydrolytic degradation after signal transmission. Together, these results reveal that D14 is a dual-functional receptor, responsible for both the perception and deactivation of bioactive SLs.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Lactonas/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Receptores de Superfície Celular/metabolismo , Transdução de Sinais , Proteínas de Arabidopsis/genética , Domínio Catalítico/genética , Hidrólise , Mutação , Oryza/genética , Oryza/metabolismo , Plantas Geneticamente Modificadas , Receptores de Superfície Celular/genética
10.
Int J Mol Sci ; 19(9)2018 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-30200620

RESUMO

Strigolactones (SLs), a group of plant hormones, induce germination of root-parasitic plants and inhibit shoot branching in many plants. Shoot branching is an important trait that affects the number and quality of flowers and fruits. Root-parasitic plants, such as Phelipanche spp., infect tomato roots and cause economic damage in Europe and North Africa-hence why resistant tomato cultivars are needed. In this study, we found carotenoid cleavage dioxygenase 8-defective mutants of Micro-Tom tomato (slccd8) by the "targeting induced local lesions in genomes" (TILLING) method. The mutants showed excess branching, which was suppressed by exogenously applied SL. Grafting shoot scions of the slccd8 mutants onto wild-type (WT) rootstocks restored normal branching in the scions. The levels of endogenous orobanchol and solanacol in WT were enough detectable, whereas that in the slccd8 mutants were below the detection limit of quantification analysis. Accordingly, root exudates of the slccd8 mutants hardly stimulated seed germination of root parasitic plants. In addition, SL deficiency did not critically affect the fruit traits of Micro-Tom. Using a rhizotron system, we also found that Phelipanche aegyptiaca infection was lower in the slccd8 mutants than in wild-type Micro-Tom because of the low germination. We propose that the slccd8 mutants might be useful as new tomato lines resistant to P. aegyptiaca.


Assuntos
Dioxigenases/genética , Resistência à Doença , Mutação , Orobanche/fisiologia , Solanum lycopersicum/parasitologia , Germinação , Lactonas/farmacologia , Solanum lycopersicum/efeitos dos fármacos , Solanum lycopersicum/genética , Doenças das Plantas/parasitologia , Reguladores de Crescimento de Plantas/farmacologia , Proteínas de Plantas/genética , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/genética , Raízes de Plantas/parasitologia
11.
J Vis Exp ; (133)2018 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-29608154

RESUMO

Adventitious shoot formation is an important technique for the propagation of economically important crops and for the regeneration of transgenic plants. Phytohormone treatment is required for the induction of adventitious shoots in most species. Whether adventitious shoots can be induced is determined by the balance between auxin and cytokinin (CK) levels. Much effort goes into determining optimum concentrations and combinations of phytohormones in each tissue used as explants and in each plant species. In ipecac, however, adventitious shoots can be induced on internodal segments in culture medium without phytohormone treatment. This allows the inherent plasticity of ipecac for cell differentiation to be evaluated. To induce adventitious shoots in ipecac, we cultured internodal segments at 24 °C under 15 µmol m-2 s-1 of light in a 14-h light/10-h dark cycle on phytohormone-free B5 medium solidified with 0.2% gellan gum for 5 weeks. To investigate phytohormone dynamics during adventitious shoot formation, we measured endogenous indole-3-acetic acid and CKs in the segments by liquid chromatography-tandem mass spectrometry LC-MS/MS. This method allows analysis of endogenous indole-3-acetic acid and CKs levels in a simple manner. It can be applied to investigate the dynamics of endogenous auxin and CK during organogenesis in other plant species.


Assuntos
Cephaelis/metabolismo , Cromatografia Líquida/métodos , Citocininas/metabolismo , Ácidos Indolacéticos/metabolismo , Espectrometria de Massas em Tandem/métodos , Cephaelis/química , Citocininas/análise , Ácidos Indolacéticos/análise , Brotos de Planta/química , Brotos de Planta/metabolismo
12.
Plant Direct ; 2(4): e00050, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31245716

RESUMO

Plants produce strigolactones (SLs) in roots in response to nitrogen or phosphate deficiency. To evaluate SL levels under other mineral deficiencies in rice, we cultivated rice seedlings in hydroponic media without nitrogen, phosphorus, potassium, sulfur, calcium, magnesium, and iron. Tiller bud outgrowth was stimulated under calcium deficiency because of low SL levels. SL levels increased under sulfur deficiency, in addition to phosphate, and nitrogen deficiencies. To explore which genes are key regulators of SL production under sulfur deficiency, we analyzed the expression of SL-related genes in sulfur-sufficient and sulfur-deficient conditions. An SL biosynthesis gene, DWARF27 (D27), was strongly expressed under sulfur deficiency, and its expression was decreased by sulfur supply. The levels of D10, D17, and OsMAX1 transcripts did not differ between sulfur-sufficient and sulfur-deficient conditions. These results suggest that the increased SL levels under sulfur deficiency are due to a high expression of D27. A combination of nitrogen, phosphorus, and sulfur deficiencies had no additive synergistic effect on SL production. Under combined phosphorus and sulfur deficiency, the expression levels of most SL biosynthesis genes were elevated. The number of tiller buds in the d27 mutant was higher than in the wild type, but lower than in other d mutants. Under sulfur deficiency, the chlorophyll content of d27 was lower than those of other d mutants. These results indicate that D27 plays an important role in adaptation to sulfur deficiency in rice.

13.
Plant Physiol ; 174(2): 1250-1259, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28404726

RESUMO

Strigolactones (SLs) are a class of plant hormones that regulate diverse physiological processes, including shoot branching and root development. They also act as rhizosphere signaling molecules to stimulate the germination of root parasitic weeds and the branching of arbuscular mycorrhizal fungi. Although various types of cross talk between SLs and other hormones have been reported in physiological analyses, the cross talk between gibberellin (GA) and SLs is poorly understood. We screened for chemicals that regulate the level of SLs in rice (Oryza sativa) and identified GA as, to our knowledge, a novel SL-regulating molecule. The regulation of SL biosynthesis by GA is dependent on the GA receptor GID1 and F-box protein GID2. GA treatment also reduced the infection of rice plants by the parasitic plant witchers weed (Striga hermonthica). These data not only demonstrate, to our knowledge, the novel plant hormone cross talk between SL and GA, but also suggest that GA can be used to control parasitic weed infections.


Assuntos
Giberelinas/metabolismo , Lactonas/metabolismo , Transdução de Sinais , Genes de Plantas , Germinação/efeitos dos fármacos , Mutação/genética , Oryza/genética , Oryza/metabolismo , Oryza/parasitologia , Doenças das Plantas/parasitologia , Proteínas de Plantas/metabolismo , Raízes de Plantas/genética , Raízes de Plantas/parasitologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Transdução de Sinais/efeitos dos fármacos , Striga/fisiologia
14.
Plant Cell Physiol ; 56(6): 1059-72, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25713176

RESUMO

The structural requirements of strigolactones (SLs) involved in germination induction of root parasitic plants and hyphal branching in arbuscular mycorrhizal (AM) fungi have been extensively studied. However, our knowledge of the requirements of SLs involved in shoot branching inhibition in plants is still limited. To address this question, we investigated the structure-activity relationships of SLs in shoot branching inhibition in rice and Arabidopsis. SLs possess a four-ring structure, with a tricyclic lactone (ABC-rings) connected to a methylbutenolide part (D-ring) via an enol ether bridge. Here, we show that the the (R) configuration at C-2', which determines the steric position of the D-ring relative to the enol ether olefin bond, is critical for the hormonal activity in rice. Replacement of the enol ether moiety by an alkoxy or imino ether resulted in a severe reduction in biological activity in rice. Moreover, yeast two-hybrid experiments using a possible SL receptor, DWARF14 (D14), and a repressor in the SL signaling pathway, DWARF53 (D53), showed that D14 can interact with D53 in the presence of (2'R) stereoisomers of SLs, but not (2'S) stereoisomers, suggesting that the stereostructure of SLs is crucial for the interaction of these proteins. When GR5, an AB-ring-truncated analog, was applied to the hydroponic culture medium, strong inhibition of shoot branching was observed both in rice and in Arabidopsis. However, GR5 was only weakly active when directly applied to the axillary buds of Arabidopsis. Our results indicate that the difference in plant species and application methods greatly influences the apparent SL biological activity.


Assuntos
Arabidopsis/crescimento & desenvolvimento , Lactonas/farmacologia , Oryza/crescimento & desenvolvimento , Brotos de Planta/crescimento & desenvolvimento , Arabidopsis/efeitos dos fármacos , Meios de Cultura , Éter/química , Germinação/efeitos dos fármacos , Hidroponia , Hipocótilo/efeitos dos fármacos , Hipocótilo/crescimento & desenvolvimento , Lactonas/química , Oryza/efeitos dos fármacos , Brotos de Planta/efeitos dos fármacos , Sementes/efeitos dos fármacos , Sementes/crescimento & desenvolvimento , Estereoisomerismo , Técnicas do Sistema de Duplo-Híbrido
15.
Plants (Basel) ; 4(3): 664-77, 2015 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-27135345

RESUMO

Leaf senescence is a complicated developmental process that involves degenerative changes and nutrient recycling. The progress of leaf senescence is controlled by various environmental cues and plant hormones, including ethylene, jasmonic acid, salicylic acid, abscisic acid, cytokinins, and strigolactones. The production of strigolactones is induced in response to nitrogen and phosphorous deficiency. Strigolactones also accelerate leaf senescence and regulate shoot branching and root architecture. Leaf senescence is actively promoted in a nutrient-poor soil environment, and nutrients are transported from old leaves to young tissues and seeds. Strigolactones might act as important signals in response to nutrient levels in the rhizosphere. In this review, we discuss the possible roles of strigolactones during leaf senescence.

16.
Planta ; 240(2): 399-408, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24888863

RESUMO

Strigolactones (SLs) act as plant hormones that inhibit shoot branching and stimulate secondary growth of the stem, primary root growth, and root hair elongation. In the moss Physcomitrella patens, SLs regulate branching of chloronemata and colony extension. In addition, SL-deficient and SL-insensitive mutants show delayed leaf senescence. To explore the effects of SLs on leaf senescence in rice (Oryza sativa L.), we treated leaf segments of rice dwarf mutants with a synthetic SL analogue, GR24, and evaluated their chlorophyll contents, ion leakage, and expression levels of senescence-associated genes. Exogenously applied GR24 restored normal leaf senescence in SL-deficient mutants, but not in SL-insensitive mutants. Most plants highly produce endogenous SLs in response to phosphate deficiency. Thus, we evaluated effects of GR24 under phosphate deficiency. Chlorophyll levels did not differ of in the wild-type between the sufficient and deficient phosphate conditions, but increased in the SL-deficient mutants under phosphate deficiency, leading in the strong promotion of leaf senescence by GR24 treatment. These results indicate that the mutants exhibited increased responsiveness to GR24 under phosphate deficiency. In addition, GR24 accelerated leaf senescence in the intact SL-deficient mutants under phosphate deficiency as well as dark-induced leaf senescence. The effects of GR24 were stronger in d10 compared to d17. Based on these results, we suggest that SLs regulate leaf senescence in response to phosphate deficiency.


Assuntos
Envelhecimento/efeitos dos fármacos , Oryza/efeitos dos fármacos , Oryza/metabolismo , Fosfatos/deficiência , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Compostos Heterocíclicos com 3 Anéis/farmacologia , Lactonas/farmacologia , Reguladores de Crescimento de Plantas/metabolismo
17.
Proc Natl Acad Sci U S A ; 111(4): 1640-5, 2014 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-24434551

RESUMO

Strigolactones (SLs) are a class of terpenoid plant hormones that regulate shoot branching as well as being known as root-derived signals for symbiosis and parasitism. SL has tricyclic-lactone (ABC-ring) and methyl butenolide (D-ring), and they are connected through an enol ether bridge. Recently, a putative biosynthetic intermediate called carlactone (CL), of which carbon skeleton is in part similar to those of SLs, was identified by biochemical analysis of three biosynthetic enzymes, DWARF27, CAROTENOID CLEAVAGE DIOXYGENASE 7 (CCD7), and CCD8 in vitro. However, CL has never been identified from plant tissues, and the conversion of CL to SLs has not been proven in vivo. To address these questions, we chemically synthesized (13)C-labeled CL. We show that (13)C-labeled CL is converted to (-)-[(13)C]-2'-epi-5-deoxystrigol ((-)-2'-epi-5DS) and [(13)C]-orobanchol, endogenous SLs in rice, in the dwarf10 mutant, which is defective in CCD8. In addition, we successfully identified endogenous CL by using liquid chromatography-quadrupole/time-of-flight tandem mass spectrometry in rice and Arabidopsis. Furthermore, we determined the absolute stereochemistry of endogenous CL to be (11R)-configuration, which is the same as that of (-)-2'-epi-5DS at the corresponding position. Feeding experiments showed that only the (11R)-isomer of CL, but not the (11S)-isomer, was converted to (-)-2'-epi-5DS in vivo. Taken together, our data provide conclusive evidence that CL is an endogenous SL precursor that is stereospecifically recognized in the biosynthesis pathway.


Assuntos
Lactonas/metabolismo , Vias Biossintéticas , Cromatografia Líquida , Oryza/metabolismo , Espectrometria de Massas em Tandem
18.
Food Chem ; 152: 251-60, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24444934

RESUMO

The aim of this work was to develop a simple and rapid in vitro evaluation method for screening and discovery of uncharacterised and untapped prebiotic foods. Using a NMR-based metabolomic approach coupled with multivariate statistical analysis, the metabolic profiles generated by intestinal microbiota after in vitro incubation with feces were examined. The viscous substances of Japanese bunching onion (JBOVS) were identified as one of the candidate prebiotic foods by this in vitro screening method. The JBOVS were primarily composed of sugar components, especially fructose-based carbohydrates. Our results suggested that ingestion of JBOVS contributed to lactate and acetate production by the intestinal microbiota, and were accompanied by an increase in the Lactobacillus murinus and Bacteroidetes sp. populations in the intestine and fluctuation of the host-microbial co-metabolic process. Therefore, our approach should be useful as a rapid and simple screening tool for potential prebiotic foods.


Assuntos
Allium/química , Bactérias/metabolismo , Espectroscopia de Ressonância Magnética/métodos , Prebióticos/análise , Allium/metabolismo , Allium/microbiologia , Animais , Bactérias/genética , Bactérias/crescimento & desenvolvimento , Bactérias/isolamento & purificação , Alimento Funcional/análise , Alimento Funcional/microbiologia , Mucosa Intestinal/metabolismo , Intestinos/microbiologia , Masculino , Camundongos Endogâmicos BALB C , Microbiota , Prebióticos/microbiologia
19.
Plant Signal Behav ; 8(5): e24193, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23511201

RESUMO

TIS108 is a triazole-type strigolactone (SL)-biosynthesis inhibitor that reduces the level of 2'-epi-5-deoxystrigol (epi-5DS) in rice. Here we report the effects of TIS108 on Arabidopsis. Treatment of TIS108 increased the number of branches and repressed root hair elongation as was observed in SL-deficient mutants, and co-application of GR24, a synthetic SL analog, recovered the TIS108-induced phenotype to that of wild-type. In addition, MAX3 and MAX4 genes in the SL-biosynthesis pathway were upregulated in TIS108-treated Arabidopsis, probably due to feedback regulation caused by SL deficiency. These results indicate that TIS108 is an effective tool for regulating SL production in Arabidopsis.


Assuntos
Arabidopsis/metabolismo , Hexanonas/farmacologia , Lactonas/metabolismo , Triazóis/farmacologia , Arabidopsis/efeitos dos fármacos , Arabidopsis/genética , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Hexanonas/química , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Triazóis/química
20.
New Phytol ; 196(4): 1208-1216, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23025475

RESUMO

Arbuscular mycorrhiza (AM) represents an ancient endosymbiosis between plant roots and Glomeromycota fungi. Strigolactones (SLs), plant-derived terpenoid lactones, activate hyphal branching of AM fungi before physical contact. Lack of SL biosynthesis results in lower colonization of AM fungi. The F-box protein, DWARF3 (D3), and the hydrolase family protein DWARF14 (D14) are crucial for SL responses in rice. Here we conducted AM fungal colonization assays with the SL-insensitive d3 and d14 mutants. The d3 mutant exhibited strong defects in AM fungal colonization, whereas the d14 mutant showed higher AM fungal colonization. As D14 has a homologous protein, D14-LIKE, we generated D14-LIKE knockdown lines by RNA interference in the wildtype and d14 background. D14 and D14-LIKE double knockdown lines exhibited similar colonization rates as those of the d14-1 mutant. D3 is crucial for establishing AM symbiosis in rice, whereas D14 and D14-LIKE are not. Our results suggest distinct roles for these SL-related components in AM symbiosis.


Assuntos
Proteínas F-Box/metabolismo , Glomeromycota/fisiologia , Lactonas/metabolismo , Micorrizas/fisiologia , Oryza/fisiologia , Proteínas de Plantas/metabolismo , Simbiose/fisiologia , Terpenos/metabolismo , Proteínas F-Box/genética , Regulação da Expressão Gênica de Plantas , Técnicas de Silenciamento de Genes , Mutação , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas , Interferência de RNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...