Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Cell Sci ; 118(Pt 15): 3327-38, 2005 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-16079277

RESUMO

Calcium and calmodulin-dependent protein kinase II (CaMKII) plays a fundamental role in the synaptic plasticity events that underlie learning and memory. Regulation of CaMKII kinase activity occurs through an autoinhibitory mechanism in which a regulatory domain of the kinase occupies the catalytic site and calcium/calmodulin activates the kinase by binding to and displacing this regulatory domain. A single putative ortholog of CaMKII, encoded by unc-43, is present in the Caenorhabditis elegans nervous system. Here we examined UNC-43 subcellular localization in the neurons of intact animals and show that UNC-43 is localized to clusters in ventral cord neurites, as well as to an unlocalized pool within these neurites. A mutation that mimics autophosphorylation within the regulatory domain results in an increase in the levels of UNC-43 in the unlocalized neurite pool. Multiple residues of CaMKII facilitate the interaction between the catalytic domain and the regulatory domain, thereby keeping the kinase inactive. Whereas most mutations in these residues result in an increased neurite pool of UNC-43, we have identified two residues that result in the opposite effect when mutated: a decreased neurite pool of UNC-43. The activity of UNC-2, a voltage-dependent calcium channel, is also required for UNC-43 to accumulate in the neurites, suggesting that neural activity regulates the localization of UNC-43. Our results suggest that the activation of UNC-43 by calcium/calmodulin displaces the autoinhibitory domain, thereby exposing key residues of the catalytic domain that allow for protein translocation to the neurites.


Assuntos
Proteínas Quinases Dependentes de Cálcio-Calmodulina/metabolismo , Sequência de Aminoácidos , Animais , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Cálcio/farmacologia , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina , Proteínas Quinases Dependentes de Cálcio-Calmodulina/efeitos dos fármacos , Proteínas Quinases Dependentes de Cálcio-Calmodulina/genética , Calmodulina/farmacologia , Catálise , Linhagem Celular , Ativação Enzimática/fisiologia , Dados de Sequência Molecular , Neurônios/metabolismo , Estrutura Terciária de Proteína/fisiologia , Transporte Proteico/efeitos dos fármacos , Transporte Proteico/genética , Transporte Proteico/fisiologia , Ratos , Receptores de AMPA/metabolismo
2.
Mol Biol Cell ; 15(11): 4818-28, 2004 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-15317844

RESUMO

Alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA)-type glutamate receptors mediate the majority of excitatory signaling in the CNS, and the functional properties and subcellular fate of these receptors depend on receptor subunit composition. Subunit assembly is thought to occur in the endoplasmic reticulum (ER), although we are just beginning to understand the underlying mechanism. Here we examine the trafficking of Caenorhabditis elegans glutamate receptors through the ER. Our data indicate that neurons require signaling by the unfolded protein response (UPR) to move GLR-1, GLR-2, and GLR-5 subunits out of the ER and through the secretory pathway. In contrast, other neuronal transmembrane proteins do not require UPR signaling for ER exit. The requirement for the UPR pathway is cell type and age dependent: impairment for receptor trafficking increases as animals age and does not occur in all neurons. Expression of XBP-1, a component of the UPR pathway, is elevated in neurons during development. Our results suggest that UPR signaling is a critical step in neural function that is needed for glutamate receptor assembly and secretion.


Assuntos
Retículo Endoplasmático/metabolismo , Agonistas de Aminoácidos Excitatórios/farmacologia , Receptores de Glutamato/química , Ácido alfa-Amino-3-hidroxi-5-metil-4-isoxazol Propiônico/farmacologia , Animais , Caenorhabditis elegans , Proteínas de Caenorhabditis elegans/metabolismo , DNA Complementar/metabolismo , Proteínas de Fluorescência Verde/metabolismo , Imuno-Histoquímica , Microscopia de Fluorescência , Modelos Biológicos , Mutação , Neurônios/metabolismo , Dobramento de Proteína , Transporte Proteico , RNA/metabolismo , Receptores de AMPA/metabolismo , Receptores de Glutamato/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais , Fatores de Tempo , Transgenes
3.
J Biol Chem ; 277(2): 1593-8, 2002 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-11700325

RESUMO

The two major chemoreceptors of Escherichia coli, Tsr and Tar, mediate opposite responses to the same changes in cytoplasmic pH (pH(i)). We set out to identify residues involved in pH(i) sensing to gain insight into the general mechanisms of signaling employed by the chemoreceptors. Characterization of various chimeras of Tsr and Tar localized the pH(i)-sensing region to Arg(259)-His(267) of Tar and Gly(261)-Asp(269) of Tsr. This region of Tar contains three charged residues (Arg(259)-Ser(261), Asp(263), and His(267)) that have counterparts of opposite charge in Tsr (Gly(261)-Glu(262), Arg(265), and Asp(269)). The replacement of all of the three charged residues in Tar or Arg(259)-Ser(260) alone by the corresponding residues of Tsr reversed the polarity of pH(i) response, whereas the replacement of Asp(263) or His(267) did not change the polarity but altered the time course of pH(i) response. These results suggest that the electrostatic properties of a short cytoplasmic region within the linker region that connects the second transmembrane helix to the first methylation helix is critical for switching the signaling state of the chemoreceptors during pH sensing. Similar conformational changes of this region in response to external ligands may be critical components of transmembrane signaling.


Assuntos
Proteínas de Bactérias/metabolismo , Proteínas de Escherichia coli , Escherichia coli/genética , Proteínas de Membrana/metabolismo , Transdução de Sinais/fisiologia , Sequência de Aminoácidos , Ácido Aspártico/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Movimento Celular/fisiologia , Células Quimiorreceptoras , Dimerização , Escherichia coli/fisiologia , Concentração de Íons de Hidrogênio , Proteínas de Membrana/química , Proteínas de Membrana/genética , Dados de Sequência Molecular , Mutação , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Receptores de Superfície Celular/química , Receptores de Superfície Celular/metabolismo , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Alinhamento de Sequência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...